Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T04:01:03.648Z Has data issue: false hasContentIssue false

Self-focusing and self-phase modulation of an elliptic Gaussian laser beam in collisionless magnetoplasma

Published online by Cambridge University Press:  21 September 2006

NARESHPAL SINGH SAINI
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar, India
TARSEM SINGH GILL
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar, India

Abstract

The problem of nonlinear self-focusing of elliptic Gaussian laser beam in collisionless magnetized plasma is studied using variation approach. The dynamics of the combined effects of nonlinearity and spatial diffraction is presented. With a and b as the beam width parameters of the beam along x and y directions, respectively, the phenomenon of cross-focusing is observed where focusing of a results in defocusing of b and vice versa. Although no stationary self-trapping is observed, oscillatory self-trapping occurs far below the threshold. The regularized phase is always negative.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phy. Usp. 10, 609636.CrossRefGoogle Scholar
Anderson, D. (1983). Variational approach to nonlinear pulse propagation in optical fibers. Phys. Rev. A 27, 31353145.CrossRefGoogle Scholar
Anderson, D., Bonnedal, M. & Lisak, M. (1979). Self-trapped cylindrical laser beams. Phys. Fluids 22, 18381840.CrossRefGoogle Scholar
Anderson, D., Bonnedal, M. & Lisak, M. (1980). Nonlinear propagation of elliptically shaped Gaussian laser beams. J. Plasma Phys. 23, 115127.CrossRefGoogle Scholar
Anderson, M., Garate, E., Rostocker, N., Song, Y., Van Drie, A. & Bystrytskii, V. (2005). Propagation of intense plasma and ion beams across B-field in vacuum and magnetized plasma. Laser Part. Beams 23, 117130.Google Scholar
Askar'yan, G.A. (1962). Effect of the gradient of a strong electromagnetic beam on electron and atoms. J. Exp. Theor. Phys. 42, 15671570.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Laser Driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401409.Google Scholar
Beech, R. & Osman, F. (2005). Radiation reduction of optical solitons resulting from higher order dispersion terms in the nonlinear Schrdinger equation. Laser Part. Beams 23, 483502.Google Scholar
Berge, L. (1997). Self-focusing dynamics of nonlinear waves in media with parabolic-type inhomogeneities. Phys. Plasmas 4, 12271237.CrossRefGoogle Scholar
Bret, A., Fripo, M.-C. & Deutsch, C. (2005). Bridging the gap between two stream and filamentation instabilities. Laser Part. Beams 23, 375384.Google Scholar
Chiao, R.Y., Garmire, E. & Townes, C.H. (1964). Self-trapping of optical beams. Phys. Rev. Lett. 13, 479482.CrossRefGoogle Scholar
Clark, T.R. & Milchberg, H.M. (1997). Time- and space-resolved density evolution of the plasma waveguide. Phys. Rev. Lett. 78, 23732376.CrossRefGoogle Scholar
Cornolti, F., Lucchesi, M. & Zambon, B. (1990). Elliptic Gaussian beam self-focusing in nonlinear media. Opt. Commun. 75, 129135.CrossRefGoogle Scholar
Dorranian, D., Ghoranneviss, M., Starodubtev, M., Yugami, M. & Nishida, Y. (2005). Microwave emission from TW-fs laser irradiation of gas jet. Laser Part. Beams 23, 583596.CrossRefGoogle Scholar
Gill, T.S., Saini, N.S. & Kaul, S.S. (2000). Dynamics of self-focusing and self-phase modulation of elliptic Gaussian laser beam in a Kerr-medium. Pramana J. Phys. 55, 423431.Google Scholar
Gill, T.S., Saini, N.S., Kaul, S.S. & Singh, A. (2004). Propagation of elliptic Gaussian laser beam in a higher order non-linear medium. Optik 115, 493498.CrossRefGoogle Scholar
Hauser, T., Scheid, W. & Hora, H. (1988). Analytical calculation of relativistic self focusing. J. Opt. Soc. Am. B 5, 20292034.CrossRefGoogle Scholar
Hauser, T., Scheid, W. & Hora, H. (1992). Theory of ions emitted in a plasma by relativistic self-focusing of laser beams. Phys. Rev. A 45, 12781281.CrossRefGoogle Scholar
Hora, H. (1969). Self-focusing of laser beams in a plasma by Ponderomotive Forces. Zeitschriftd. Physik 226, 156159.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.Google Scholar
Hora, H. (2005). Difference between relativistic petawatt-picosecond laser-plasma interaction and subrelativistic plasma-block generation. Laser Part. Beams 23, 441451.Google Scholar
Jones, D.A., Kane, E.L., Lalousis, P., Wiles, P.R. & Hora, H. (1982). Density modification and energetic ion production at relativistic self-focusing of laser beams in plasmas. Phys. Fluids 25, 22952302.CrossRefGoogle Scholar
Jones, R.D., Mead, W.C., Coggeshall, S.V., Aldrich, C.H., Norton, J.L., Pollak, G.D. & Wallace, J.M. (1988). Self-focusing and filamentation of laser light in high Z plasmas. Phys. Fluids 31, 12491272.CrossRefGoogle Scholar
Karlsson, M., Anderson, D. & Desiax, M. (1992). Dynamics of self-focusing and self phase modulation on a parabolic index optical fiber. Opt. Lett. 17, 2224.CrossRefGoogle Scholar
Karpman, V.I. & Shagalov, A.G. (1992). Self-focusing in uniaxial gyrotropic media: Qualitative and numerical investigation. Phys. Rev. A 46, 518524.CrossRefGoogle Scholar
Kaw, P., Schmidt, G. & Wilcox, T. (1973). Filamentation and trapping of electromagnetic radiation in plasmas. Phys. Fluids 16, 15221525.CrossRefGoogle Scholar
Kruglov, V.I. & Vlasov, R.A. (1985). Spiral self-trapping propagation of optical beams in media with cubic nonlinearity. Phys. Lett. A 111, 401404.CrossRefGoogle Scholar
Manassah, J.T., Baldeck, P.L. & Alfano, R.R. (1988). Self-focusing and self-phase modulation in a parabolic graded-index optical fiber. Opt. Lett. 13, 589591.CrossRefGoogle Scholar
Milchberg, H.M., Durfee_III, C.G. & Mcilrath, T.J. (1995). High-order frequency conversion in the plasma waveguide. Phys. Rev. Lett. 75, 24942497.CrossRefGoogle Scholar
Palmer, A.J. (1971). Stimulated scattering and self-focusing in laser-produced plasmas. Phys. Fluids 14, 27142718.CrossRefGoogle Scholar
Raizer, Y.P. (1967). Self focusing and defocusing, instability and stabilization of light beams in weakly absorbing media. Soviet. Phys. JETP 25, 308.Google Scholar
Russell, D.A., Dubois, D.F. & Rose, H.A. (1999). Nonlinear saturation of stimulated Raman scattering in laser hot spots. Phys. Plasmas 6, 12941317.CrossRefGoogle Scholar
Shearer, J.W. & Eddleman, J.W. (1973). Laser light forces and self-focusing in fully ionized plasmas. Phys. Fluids 16, 17531761.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Progress in Optics 13, 169.
Subbarao, D., Uma, R. & Singh, H. (1998). Paraxial theory of self-focusing of cylindrical laser beams. I. ABCD laws. Phys. Plasmas 5, 34403450.CrossRefGoogle Scholar
Young, P.E., Hammer, J.H., Wilks, S.C. & Kruer, W.L. (1995). Laser beam propagation and channel formation in underdense plasmas. Phys. Plasmas 2, 28252834.CrossRefGoogle Scholar
Zakharov, V.I. (1972). Collapse of Langmuir waves. Sov. Phys. JETP 35, 908914.Google Scholar