Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T17:16:04.914Z Has data issue: false hasContentIssue false

Repetitive outbursts of fast carbon and fluorine ions from sub-nanosecond laser-produced plasma

Published online by Cambridge University Press:  23 January 2009

J. Krása*
Affiliation:
Institute of Physics A.S.C.R., v.v.i., Prague, Czech Republic
A. Velyhan
Affiliation:
Institute of Physics A.S.C.R., v.v.i., Prague, Czech Republic
K. Jungwirth
Affiliation:
Institute of Physics A.S.C.R., v.v.i., Prague, Czech Republic
E. Krouský
Affiliation:
Institute of Physics A.S.C.R., v.v.i., Prague, Czech Republic
L. Láska
Affiliation:
Institute of Physics A.S.C.R., v.v.i., Prague, Czech Republic
K. Rohlena
Affiliation:
Institute of Physics A.S.C.R., v.v.i., Prague, Czech Republic
M. Pfeifer
Affiliation:
Institute of Physics A.S.C.R., v.v.i., Prague, Czech Republic
J. Ullschmied
Affiliation:
Institute of Plasma Physics A.S.C.R., v.v.i., Prague, Czech Republic
*
Address correspondence and reprint requests to: J. Krása, Institute of Physics A.S.C.R., v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic. E-mail: [email protected]

Abstract

Repeated plasma outbursts were recognized at our analyzing currents of the fast carbon and fluorine ions produced with the sub-nanosecond PALS laser beam (λ0 = 1.315 µm, τL = ≈350 ps, Imax ≈ 6 × 1015 W/cm2) focused onto polytetrafluoroethylene and polyethylene targets. This study deals with a repetitive occurrence of doublets of C6+-C5+ and F9+-F8+ ion peaks in the time-of-flight (TOF) spectra, whose TOF can be related to the same accelerating voltage: . The repeated occurrence of ion outbursts containing fully ionized ions can be characterized by a set of discrete voltages Ui, where the subscript i ∈ (1, N) labels the outbursts of ions from the fastest one (i = 1) up to the slowest and in the TOF spectrum yet distinguishable outburst (i = N). These discrete values could indicate plasma pulsations followed by repetitive outbursts of ions. The ions expand with a velocity up to ≈9 × 108 cm/s. The corresponding values of the accelerating voltage of ≈800 kv, and the temperature of ≈1.1 keV were determined by revealing partial ion currents based on the shifted Maxwell-Boltzmann velocity distribution. Characteristics of fast ion outbursts depend on the focus position with respect to the target surface.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Betti, S., Ceccherini, F., Cornolti, F. & Pegoraro, F. (2005). Expansion of finite-size plasma in vacuum. Plasma Phys. Control. Fusion 47, 521529.CrossRefGoogle Scholar
Caridi, F., Torrisi, L., Margarone, D. & Borrielli, A. (2008). Investigations on low temperature laser-generated plasmas. Laser Part. Beams 26, 265271.CrossRefGoogle Scholar
Coe, S.E., Afsharrad, T. & Willi, O. (1989). Direct observations of filamentation and self-focusing in a large underdense plasma. Opt. Comm. 73, 299303.CrossRefGoogle Scholar
Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernández, J., Gauthier, J.-C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Sage, G.P.Le, Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pépin, H. & Renard-leGalloudec, N. (2004). Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801.CrossRefGoogle ScholarPubMed
Crow, J.E., Auer, P.L. & Allen, J.E. (1975). The expansion of a plasma into a vacuum. J. Plasma Phys. 14, 6576.CrossRefGoogle Scholar
Ehler, A.W. (1975). High-energy ions from a CO2 laser-produced plasma. J. Appl. Phys. 46, 24642467.CrossRefGoogle Scholar
Eidmann, K., Amiranoff, F., Fedosejevs, R., Maaswinkel, A.G.M., Petsch, R., Sigel, R., Spindler, G., Teng, Y.L., Tsakiris, G. & Witkowski, S. (1984). Interaction of 1.3-µm laser radiation with thin foil targets. Phys. Rev. A 30, 25682589.CrossRefGoogle Scholar
Fuchs, J., Antici, P., D'Humieres, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C.A., Kaluza, M., Malka, V., Manclossi, M., Meyroneinc, S., Mora, P., Schreiber, J., Toncian, T., Pepin, H. & Audebert, R. (2006). Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2, 4854.CrossRefGoogle Scholar
Gitomer, S. J., Jones, R.D., Begay, F., Ehler, A.W., Kepphart, J.F. & Kristal, R. (1986). Fast ions and hot electrons in the laser-plasma interactions. Phys. Fluids 29, 26792688.CrossRefGoogle Scholar
Goforth, R.R. & Hammerling, P. (1976). Recombination in an expanding laser-produced plasma. J. Appl. Phys. 47, 39183922.CrossRefGoogle Scholar
Hora, H. & Aydin, M. (1992). Suppression of stochastic pulsation in laser-plasma interaction by smoothing methods. Phys. Rev. A 45, 61236125.CrossRefGoogle ScholarPubMed
Hora, H. (2006). Smoothing and stochastic pulsation at high power laser-plasma interaction. Laser Part. Beams 24, 455463.CrossRefGoogle Scholar
Jungwirth, K., Cejnarová, A., Juha, L., Králiková, B., Krása, J., Krouský, E., Krupičková, P., Láska, L., Mašek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skála, J., Straka, P. & Ullschmied, J. (2001). The Prague Asterix Laser System PALS. Phys. Plasmas 8, 24952501.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Kalal, M., Martinkova, M., Ullschmied, J., Krousky, E., Masek, k., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2008). PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface. Laser Part. Beams 26, 189196.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krouský, E., Mašek, K., Pfeifer, M., Rohlena, K, Skála, J. & Pisarczyk, P. (2007). Interferometric investigations of influence of target irradiation on the parameters of laser-produced plasma jets. Laser Part. Beams 25, 425434.CrossRefGoogle Scholar
Kelly, R. & Dreyfus, R.W. (1988). On the effect of Knudsen-layer formation on studies of vaporazation, sputtering, and desorption. Surf. Sci. 198, 263276.CrossRefGoogle Scholar
Krása, J., Jungwirth, K., Krouský, E., Láska, L., Rohlena, K., Pfeifer, M., Ullschmied, J. & Velyhan, A. (2007). Temperature and centre-of-mass energy of ions emitted by laser-produced polyethylene plasma. Plasma Phys. Contr. Fusion 49, 16491659.CrossRefGoogle Scholar
Krása, J., Lorusso, A., Doria, D., Belloni, F., Nassisi, V. & Rohlena, K. (2005). Time-of-flight profile of multiply-charged ion currents produced by a pulse laser. Plasma Phys. Contr. Fusion 47, 13391349.CrossRefGoogle Scholar
Labaune, C., Fabre, E., Michard, A. & Briand, F. (1985). Evidence of stimulated Brillouin backscattering from a plasma at short laser wavelengths. Phys. Rev. A 32, 577580.CrossRefGoogle ScholarPubMed
Láska, L., Badziak, J., Boody, F. P., Gammino, S., Jungwirth, K., Krása, J., Krouský, E., Parys, P., Pfeifer, M., Rohlena, K., Ryć, L., Skála, J., Torrisi, L., Ullschmied, J., & WoŁowski, J. (2007 a). Factors influencing parameters of laser ion sources. Laser Part. Beams 25, 199205.CrossRefGoogle Scholar
Láska, L., Badziak, J., Gammino, S., Jungwirth, K., Kasperczuk, A., Krása, J., Krouský, E., Kubeš, P., Parys, P., Pfeifer, M., Pisarczyk, T., Rohlena, K., Rosiński, M., Ryć, L., Skála, J., Torrisi, L., Ullschmied, J., Velyhan, A. & WoŁowski, J. (2007 b). The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams. Laser Part. Beams 25, 549556.CrossRefGoogle Scholar
Láska, L., Jungwirth, K., Krása, J., Krouský, E., Pfeifer, M., Rohlena, K., Ullschmied, J., Badziak, J., Parys, P., WoLowski, J., Gammino, S., Torrisi, L. & Boody, F.P. (2006). Self-focusing in processes of laser generation of highly-charged and high-energy heavy ions. Laser Part. Beams 24, 175179.CrossRefGoogle Scholar
Láska, L., Krása, J., Mašek, K., Pfeifer, M., Rohlena, K., Králiková, B., Skála, J., Woryna, E., Parys, P., Wolowski, J., Mróz, W., Sharkov, B. & Haseroth, H. (2000). Properties of iodine laser-produced stream of multiply charged heavy ions of different elements. Rev. Sci. Instrum. 71, 927993.CrossRefGoogle Scholar
Maddever, R.A.M, Luther-Davies, B. & Dragila, R. (1990 a). Pulsation of 1ω0 and 2ω0 emission from laser-produced plasmas. I. Experiment. Phys. Rev. A 41, 21542164.CrossRefGoogle Scholar
Maddever, R.A.M, Luther-Davies, B. & Dragila, R. (1990 b). Pulsation of 1ω0 and 2ω0 emission from laser-produced plasmas. II. Theo. Phys. Rev. A 41, 21652175.CrossRefGoogle Scholar
Mendel, C.W. Jr. &. Ohlsen, J.N. (1975). Charge-separation electric field in laser plasmas. Phys. Rev. Lett. 34, 859862.CrossRefGoogle Scholar
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.CrossRefGoogle ScholarPubMed
Nishiuchi, M., Fukumi, A., Daido, H., Li, Z., Sagisaka, A., Ogura, K., Orimo, S., Kado, M., Hayashi, Y., Mori, M., Bulanov, S. V., Esirkepov, T., Nemoto, K., Oishi, Y., Nayuki, T., Fujii, T., Noda, A., Iwashita, Y., Shirai, T. & Nakamura, S. (2006). The laser proton acceleration in the strong charge separation regime. Phys. Lett. A 357, 339344.CrossRefGoogle Scholar
Picciotto, A., Krása, J., Láska, L., Rohlena, K., Torrisi, L., Gammino, S., Mezzasalma, A.M. & Caridi, F. (2006). Plasma temperature and ion current analysis of gold ablation at different laser power rates. Nucl. Instrum. Meth. Phys. Res. B 247, 261267.CrossRefGoogle Scholar
Romagnani, L., Borghesi, M., Cecchetti, C. A., Kar, S., Antici, P., Audebert, P., Bandhoupadjay, S., Ceccherini, F., Cowan, T., Fuchs, J., Galimberti, M., Gizzi, L. A., Grismayer, T., Heathcote, R., Jung, R., Liseykina, T. V., Macchi, A., Mora, P., Neely, D., Notley, M., Osterholtz, J., Pipahl, C. A., Pretzler, G., Schiavi, A., Schurtz, G., Toncian, T., Wilson, P. A. & Will, O. (2008). Proton probing measurement of electric and magnetic fields generated by ns and ps laser-matter interactions. Laser Part. Beams 26, 241248.CrossRefGoogle Scholar
Schreiber, J., Bell, F., Gruener, F., Schramm, U., Geissler, M., Schnuerer, M., Ter-Avetisyan, S., Hegelich, B. M., Cobble, J., Brambrink, E., Fuchs, J., Audebert, P. & Habs, D. (2006). Analytical model for ion acceleration by high-intensity laser pulses. Phys. Rev. Lett. 97, 045005.CrossRefGoogle ScholarPubMed
Schreiber, J., Kaluza, M., Gruner, F., Schramm, U., Hegelich, B.M., Cobble, J., Geissler, M., Brambrink, E., Fuchs, J., Audebert, P., Habs, D. & Witte, K. (2004). Source-size measurements and charge distributions of ions accelerated from thin foils irradiated by high-intensity laser pulses. Appl. Phys. B 79, 10411045.CrossRefGoogle Scholar
Torrisi, L., Gammino, S., Ando, L. & Láska, L. (2002). Tantalum ions produced by 1064 nm pulsed laser irradiation. J. Appl. Phys. 91, 46854692.CrossRefGoogle Scholar
Torrisi, L., Margarone, D., Láska, L., Krása, J., Velyhan, A., Pfeifer, M., Ullschmied, J. & Ryć, L. (2008). Self-focusing effect in Au-target induced by high power pulsed laser at PALS. Laser Part. Beams 26, 379387.CrossRefGoogle Scholar
Tsakiris, G.D., Eidmann, K., Petsch, R. & Sigel, R. (1981). Experimental studies of the bilateral ion blowoff from laser-irradiated thin plastic foils. Phys. Rev. Lett. 46, 12021206.CrossRefGoogle Scholar