Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T01:23:40.995Z Has data issue: false hasContentIssue false

Performance of a pulsed ion beam with a renewable cryogenically cooled ion source

Published online by Cambridge University Press:  18 September 2008

T.J. Renk*
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico
G.A. Mann
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico
G.A. Torres
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico
*
Address correspondence and reprint request to: Timothy J. Renk, MS 1182, P.O. Box 5800, Sandia National Laboratories, Albuquerque, NM 87185-1182. E-mail: [email protected]

Abstract

For operation of an ion source in an intense ion beam diode, it is desirable to form a localized and robust source of high purity. A cryogenically operated ion source has great promise, since the ions are formed from a condensed high-purity gas, which has been confined to a relatively thin ice layer on the anode surface. Previous experiments have established the principles of operation of such an ion source, but have been limited in repetitive duration due to the use of short-lived liquid He cooling of the anode surface. We detail here the successful development of a “Cryo-Diode” in which the cooling was achieved with a closed-cycle cryo-pump. This results in an ion source design that can potentially be operated for an indefinite duration. Time-of-flight measurements with Faraday cups indicate that the resultant ion beam is of high-purity, and composed of singly charged ions formed out of the gas frozen out on the anode surface.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bystritski, V.M. & Didenko, A.N. (1997). High-Power Ion Beams. Berlin: Springer.Google Scholar
Child, C.D. (1911). Discharge from CaO. Phys. Rev. 32, 492511.Google Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Hanson, D.L., Porter, J.L. & Williams, R.R. (1991). High-purity ion beam production at high current densities with a liquid-helium-cooled series-field-coil extraction ion diode. J. Appl. Phys. 70, 29262938.CrossRefGoogle Scholar
Harjes, C., Adcock, J., Martinez, I., VanDevalde, D., Wavrik, R., Laderach, G. & Pena, G. (1993). Characterization of the RHEPP 1 module. Magnetic pulse compression module. IEEE 2, 787790.Google Scholar
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R.K. & Fernandez, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441444.CrossRefGoogle ScholarPubMed
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Humphries, S. Jr., Freeman, J.R., Greenly, J., Kuswa, G.W., Mendel, C.W., Poukey, J.W. & Woodall, D.M. (1980). Production and postacceleration of intense ion beams in magnetically insulated gaps. J. Appl. Phys. 51, 18761895.CrossRefGoogle Scholar
Johnson, D.J., Quintenz, J.P. & Sweeney, M.A. (1985). Electron and ion kinetics and anode plasma formation in two applied B r field ion diodes. J. Appl. Phys. 57, 794805.CrossRefGoogle Scholar
Kasuya, K., Horioka, K., Takahashi, T., Urai, A. & Hijikawa, M. (1981). New type of pulsed ion source with cryogenic anode. Appl. Phys. Lett. 39, 887888.CrossRefGoogle Scholar
Kasuya, K., Kishi, Y., Kamiya, T. & Funatsu, M. (2001). Low microdivergence medium-mass ion beam produced from a N2O cryogenic diode. Laser Part. Beams 19, 309316.CrossRefGoogle Scholar
Langmuir, I. (1913). The effect of space charge and residual gasses on thermionic currents in high vacuum. Phys. Rev. 2, 450486.CrossRefGoogle Scholar
Pfotenhauer, S.M., Jackel, O., Sachtleben, A., Polz, J., Ziegler, W., Schlenvoigt, H.-P., Amthor, K.-U., Kaluza, M.C., Ledingham, K.W.D., Sauerbrey, R., Gibbon, P., Robinson, A.P.L. & Schwoerer, H. (2008). Spectral shaping of laser generated proton beams. New J. Phys. 10, 114.CrossRefGoogle Scholar
Renk, T.J., Provencio, P.P, Prasad, S.V., Shlapakovski, A.S., Petrov, A.V., Yatsui, K., Jiang, W. & Suematsu, H. (2004). Materials modification using intense ion beams. IEEE 92, 10571081.CrossRefGoogle Scholar
Tahir, N.A., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005). The CERN large hadron collider as a tool to study high-energy density matter. Phys. Rev. Lett. 94, 135004.CrossRefGoogle ScholarPubMed
Takahashi, T., Horioka, K., Hijikawa, M., Urai, A. & Kasuya, K. (1983). Pulsed ion beam generation with cryogenic-anode diode. J. Appl. Phys. 54, 42694274.CrossRefGoogle Scholar
Takahashi, T., Horioka, K., Yoneda, H. & Kasuya, K. (1985). A new pulsed cryogenic proton source cooled by liquid helium. Appl. Phys. Lett. 46, 249250.CrossRefGoogle Scholar
VanDevender, J.P. & Cook, D.L. (1986). Inertial confinement fusion with light-ion beams. Plasma Phys. Contr. Fusion 28, 841855.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar