Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T15:40:10.121Z Has data issue: false hasContentIssue false

Marginally igniting direct-drive target designs for the laser megajoule

Published online by Cambridge University Press:  22 February 2013

V. Brandon
Affiliation:
CEA, DAM, DIF, Arpajon, France
B. Canaud*
Affiliation:
CEA, DAM, DIF, Arpajon, France
M. Primout
Affiliation:
CEA, DAM, DIF, Arpajon, France
S. Laffite
Affiliation:
CEA, DAM, DIF, Arpajon, France
M. Temporal
Affiliation:
ETSIA, Universidad Politecnica de Madrid, Madrid, Spain
*
Address correspondence and reprint requests to: B. Canaud, CEA, DAM, DIF, F-91297 Arpajon, France. E-mail: [email protected]

Abstract

Direct-drive target designs below self-ignition threshold are proposed for the laser megajoule in the context of shock-ignition. Two distinct initial aspect ratios are considered and laser pulses are shaped following a classical Kidder's law in order to achieve an implosion velocity of 300 km/s, an in-fight adiabat close to unity and to maximize the peak areal density. The pulse shapes are adjusted to arrange shock timing at the inner side of the DT fuel. The robustness of the laser pulse is addressed by the means of random variations around the initial Kidder's laws. Correlation matrices show no significant correlations between laser parameters. An admissible envelope of laser pulse is given for both designs in order to warrant more than 80% of the best peak areal density. Variations of laser drive power produce variations of implosion velocities in the range 250–370 km/s. Self-ignition threshold is achieved and thermonuclear energy are produced in the range 3 kJ–27 MJ. Finally, the random procedure shows that it is possible to improve the first deterministic optimization and the laser pulses are given.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. & Meyer-Ter-Vehn, J. (2004). Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Dense Plasma Physics. Oxford: Oxford Science Publications.CrossRefGoogle Scholar
Atzeni, S., Schiavi, A. & Bellei, C. (2007). Targets for direct-drive fast ignition at total laser energy of 200–400 kJ. Phys. Plasmas 14, 2702.CrossRefGoogle Scholar
Azechi, H., Sakaiya, T., Watari, T., Karasik, M., Saito, H., Ohtani, K., Takeda, K., Hosoda, H., Shiraga, H., Nakai, M., Shigemori, K., Fujioka, S., Murakami, M., Na-gatomo, H., Johzaki, T., Gardner, J., Colombant, D.G., Bates, J.W., Velikovich, A.L., Aglitskiy, Y., Weaver, J., Obenschain, S., Eliezer, S., Kodama, R., Norimatsu, T., Fujita, H., Mima, K. & Kan, H. (2009). Experimental evidence of impact ignition: 100-fold increase of neutron yield by impactor collision. Phys. Rev. Lett. 23, 235002235006.CrossRefGoogle Scholar
Basov, N., et al. (1992). Soviet Laser Res. 13, 396.Google Scholar
Bates, J.W., Schmitt, A.J., Fyfe, D.E., Obenschain, S.P. & Zalesak, S.T. (2010). Simulations of high-gain shock-ignited inertial-confinement-fusion implosions using less than 1 MJ of direct KrF-laser energy. Hi. Ener. Density Phys. 6, 128134.CrossRefGoogle Scholar
Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W. & Solodov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001.CrossRefGoogle ScholarPubMed
Bodner, S.E., Colombant, D.G., Schmitt, A.J., Gardner, J.H., Lehmberg, R.H. & Obenschain, S.P. (2002). Overview of new high gain target design for a laser fusion power plant. Fusion Engin. Design 60, 9398.CrossRefGoogle Scholar
Buresi, E., Coutant, J., Dautray, R., Decroisette, M., Duborgel, B., Guillaneux, P., Launspach, J., Nelson, P., Patou, C., Reisse, J.M. & Watteau, J.P. (1986). Laser program development at CEL-V: Overview of recent experimental results. Laser Part. Beams 4, 531.CrossRefGoogle Scholar
Canaud, B. & Temporal, M. (2010). High-gain shock ignition of direct-drive ICF targets for the laser megajoule. New J. Phys. 12, 3037, 2010.CrossRefGoogle Scholar
Canaud, B., Brandon, V., Laffite, S. & Temporal, M. (2012). 2D analysis of direct-drive shock-ignited HiPER-like target implosions with the full laser megajoule. Laser Part. Beams 30, 183189.CrossRefGoogle Scholar
Canaud, B., Fortin, X., Dague, N. & Bocher, J.L. (2002). Laser megajoule irradiation uniformity for direct drive. Phys. Plasmas 9, 42524260.CrossRefGoogle Scholar
Canaud, B., Fortin, X., Garaude, F., Meyer, C. & Philippe, F. (2004 a). Progress in direct-drive fusion studies for the laser megajoule. Laser Part. Beams 22, 109114.CrossRefGoogle Scholar
Canaud, B., Fortin, X., Garaude, F., Meyer, C., Philippe, F., Temporal, M., Atzeni, S. & Schiavi, A. (2004 b). High-gain direct-drive target design for the laser megajoule. Nucl. Fusion 44, 11181129.CrossRefGoogle Scholar
Canaud, B., Garaude, F., Clique, C., Lecler, N., Masson, A., Quach, R. & Van der Vliet, J. (2007). High-gain direct-drive laser fusion with indirect drive beam layout of laser megajoule. Nuclear Fusion 47, 16521655.CrossRefGoogle Scholar
Canaud, B., Laffite, S. & Temporal, M. (2001). Shock ignition of direct-drive double-shell targets. Nucl. Fusion 51.Google Scholar
Deutsch, C. & Didelez, J.P. (2011). Inertial confinement fusion fast ignition with ultra-relativistic electron beams. Laser Part. Beams 29, 3944.CrossRefGoogle Scholar
Eliezer, S. & Martinez Val, J.M. (2011). The comeback of shock waves in inertial fusion energy. Laser Part. Beams 29, 175, 2011.CrossRefGoogle Scholar
Giorla, J., Bastian, J., Bayer, C., Canaud, B., Casanova, M., Chaland, F., Cherfils, C., Clique, C., Dattolo, E., Fremerye, P., Galmiche, D., Garaude, F., Gauthier, P., Laffite, S., Lecler, N., Liberatore, S., Loiseau, P., Malinie, G., Masse, L., Masson, A., Monteil, M.C., Poggi, F., Quach, R., Renaud, F., Saillard, Y., Seytor, P., Vandenboomgaerde, M., Van der Vliet, J. & Wagon, F. (2006). Target design for ignition experiments on the laser megajoule facility. Plasma physics and controlled marginally igniting direct-drive target designs for the laser megajoule. Fusion 48, B75B82.CrossRefGoogle Scholar
Hubbard, W.B. (1966). Studies in stellar evolution. v. transport coefficients of degenerate stellar matter. Astrophys. J. 146, 858.CrossRefGoogle Scholar
Kidder, R.E. (1976). Energy gain of laser-compressed pellets — A simple model calculation. Nucl. Fusion 16, 405408.CrossRefGoogle Scholar
Laffite, S. & Loiseau, P. (2010). Design of an ignition target for the laser megajoule, mitigating parametric instabilities. Phys. Plasmas 17, 102704.CrossRefGoogle Scholar
Lan, K., Lai, D., Zhao, Y. & Li, X. (2012). Initial study and design on ignition ellipraum. Laser Part. Beams 30, 175182.CrossRefGoogle Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.CrossRefGoogle Scholar
Lindl, J.D., Amendt, P., Berger, R.L., Glendinning, S.G., Glenzer, S.H., Haan, S.W., Kauffman, R.L., Landen, O.L. & Suter, J. (2004). The physics basis for ignition using indirect-drive targets on the national ignition facility. Phys. Plasmas 11, 339491.CrossRefGoogle Scholar
Lion, C. (2010). The LMJ program: An overview. J. Phys. 244, 012003012010.Google Scholar
McKenty, P.W., Sangster, T.C., Alexander, M., Betti, R., Craxton, R.S., Delettrez, J.A., Elasky, L., Epstein, R., Frank, A., Glebov, V.Yu., Goncharov, V.N., Harding, D.R., Jin, S., Knauer, J.P., Keck, R.L., Loucks, S.J., Lund, L.D., McCrory, R.L., Marshall, F.J., Meyerhofer, D.D., Regan, S.P., Radha, P.B., Seka, W., Skupsky, S., Smalyuk, V.A., Soures, J.M., Thorp, K.A., Wozniak, M., Frenje, J.A., Li, C.K., Petrasso, R.D., Seguin, F.H., Fletcher, K.A., Padalino, S., Freeman, C., Izumi, N., Koch, J.A., Lerche, R.A., Moran, M.J., Phillips, T.W., Schmid, G.J. & Sorce, C. (2004). Direct-drive cryogenic target implosion performance on OMEGA. Phys. Plasmas 11, 27902797.CrossRefGoogle Scholar
Moses, E. (2012). The National Ignition Facility: status and progress towards fusion ignition. Fusion Sci. Techn. 61, 38.CrossRefGoogle Scholar
Murakami, M., Nagatomo, H., Azechi, H., Ogando, F., Perlado, M. & Eliezer, S. (2006). Innovative ignition scheme for ICF-impact fast ignition. Nucl. Fusion 46, 99103.CrossRefGoogle Scholar
Murakami, M., Nishihara, K. & Azechi, H. (1993). Irradiation nonuniformity due to imperfections of laser beams. J. Appl.Phys.74, 802808.CrossRefGoogle Scholar
Nuckolls, J., Wood, L., Thiessen, A. & Zimmerman, G. (1972). Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nat. 239, 139142.CrossRefGoogle Scholar
Perin, J.P. (2010). Cryogenic systems for LMJ cryotarget and HiPER application. Laser Part. Beam 28, 203.Google Scholar
Primout, M. (2004). Optimization of X-ray conversion efficiency of laser-preformed metallic plasma. J. X-ray Sci. Techn. 13, 2336.Google Scholar
Recoules, V., Lambert, F., Decoster, A., Canaud, B. & Clerouin, J. (2009). AbInitio determination of thermal conductivity of dense hydrogen plasmas. Phys. Rev. Lett. 102, 75002.CrossRefGoogle Scholar
Ribeyre, X., Schurtz, G., Lafon, M., Galera, S. & Weber, S. (2009). Shock ignition: An alternative scheme for HiPER. Plasma Phys. Contr. Fusion 51, 5013.CrossRefGoogle Scholar
Schmitt, A.J., Bates, J.W., Obenschain, S.P., Zalesak, S.T., Fyfe, D.E. & Betti, R. (2009). Direct drive fusion energy shock ignition designs for Sub-MJ lasers. Fusion Sci. Techn. 56, 377383.CrossRefGoogle Scholar
Tabak, M. & Callahan, D. (2005). Models of gain curves for fast ignition. Nucl. Instr. Meth. Phys Res. A 544, 4854.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M. & Perry, M.D. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Temporal, M. & Canaud, B. (2009). Numerical analysis of the irradiation uniformity of a directly driven inertial confinement fusion capsule. Euro. Phys. J. D 55, 139145.CrossRefGoogle Scholar
Temporal, M., Canaud, B. & Le Garrec, B.J. (2010 a). Irradiation uniformity and zooming performances for a capsule directly driven by a 32 × 9 laser beams configuration. Phys. Plasmas 17, 022701.Google Scholar
Temporal, M., Canaud, B., Laffite, S., Le Garrec, B.J. & Murakami, M. (2010 b). Illumination uniformity of a capsule directly driven by a laser facility with 32 or 48 directions of irradiation. Phys. Plasmas 17, 064504.Google Scholar
Willi, O., Barringer, L., Bell, A., Borghesi, M., Davies, J., G.lard, R., Iwase, A., MacKinnon, A., Malka, G., Meyer, C., Nuruzzaman, S., Taylor, R., Vickers, C., Hoarty, D., Gobby, P., J.son, R., Watt, R.G., Blanchot, N., Canaud, B., Croso, H., Meyer, B., Miquel, J.L., Reverdin, C., Pukhov, A. & Meyer-ter-Vehn, J. (2000). Inertial confinement fusion and fast ignitor studies. Nucl. Fusion 40, 537545.CrossRefGoogle Scholar