Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T14:28:54.987Z Has data issue: false hasContentIssue false

The demography of a dominant Amazon liana species exhibits little environmental sensitivity

Published online by Cambridge University Press:  27 October 2015

Luciana de Campos Franci*
Affiliation:
Department of Plant Biology, Ecology Graduate Program, Institute of Biology, P.O. Box 6109, University of Campinas – UNICAMP, 13083–970 Campinas, SP, Brazil
Jens-Christian Svenning
Affiliation:
Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
Henrik Balslev
Affiliation:
Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
Fernando Roberto Martins
Affiliation:
Department of Plant Biology, Institute of Biology, P.O. Box 6109, University of Campinas – UNICAMP, 13083–970 Campinas, SP, Brazil
Jacob Nabe-Nielsen
Affiliation:
Section for Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
*
1Corresponding author: [email protected]

Abstract:

Despite its high plant diversity, the Amazon forest is dominated by a limited number of highly abundant, oligarchic tree and liana species. The high diversity can be related to specific habitat requirements in many of the less common species, but fewer studies have investigated the characteristics of the dominant species. To test how environmental variation may contribute to the success of dominant species we investigated whether the vital rates of the abundant liana Machaerium cuspidatum is sensitive to canopy height, topographic steepness, vegetation density, soil components and floristic composition across an Ecuadorian Amazon forest. The population was inventoried in 1998 and in 2009. Plants were divided into seedling-sized individuals, non-climbers and climbers. Out of 448 seedling-sized plants 421 died, 539 of 732 non-climbers died, and 107 of 198 climbers died. There was weak positive effect of dense understorey on the relative growth rate of climbers. The mortality of seedling-sized plants was higher in areas with intermediate slope, but for larger plants mortality was not related to environmental variation. The limited sensitivity of the vital rates to environmental gradients in the area suggests that ecological generalism contributes to the success of this dominant Amazonian liana.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BALDECK, C. A., HARMS, K. E., YAVITT, J. B., JOHN, R., TURNER, B. L., VALENCIA, R., NAVARRETE, H., DAVIES, S. J., CHUYONG, G. B. & KENFACK, D. 2013. Soil resources and topography shape local tree community structure in tropical forests. Proceedings of the Royal Society of London B: Biological Sciences 280:20122532.Google ScholarPubMed
BURNHAM, R. J. 2002. Dominance, diversity and distribution of lianas in Yasuní, Ecuador: who is on top? Journal of Tropical Ecology 18:845864.CrossRefGoogle Scholar
BURNHAM, R. J. & ROMERO-SALTOS, H. G. 2015. Diversity and distribution of lianas in Yasuní, Ecuador. Pp. 5064 in Schnitzer, S. A., Bongers, F., Burnham, R. J. & Putz, F. E. (eds.). Ecology of lianas. Wiley Blackwell, Oxford.CrossRefGoogle Scholar
CASTELLANOS, A. 1991. Photosynthesis and gas exchange of vines. Pp. 181204 in Putz, F. E. & Mooney, H. A. (eds.). The biology of vines. Cambridge University Press, New York.Google Scholar
DE CACERES, M. & LEGENDRE, P. 2008. Beals smoothing revisited. Oecologia 156:657669.CrossRefGoogle ScholarPubMed
DUQUE, A., CAVELIER, J. & POSADA, A. 2003. Strategies of tree occupation at a local scale in terra firme forests in the Colombian Amazon. Biotropica 35:2027.Google Scholar
GIANOLI, E. 2015. The behavioural ecology of climbing plants. AoB plants: plv013.CrossRefGoogle Scholar
JOHN, R., DALLING, J. W., HARMS, K. E., YAVITT, J. B., STALLARD, R. F., MIRABELLO, M., HUBBELL, S. P., VALENCIA, R., NAVARRETE, H., VALLEJO, M. & FOSTER, R. B. 2007. Soil nutrients influence spatial distribution of tropical tree species. Proceedings of the National Academy of Sciences USA 104:864869.CrossRefGoogle ScholarPubMed
KRISTIANSEN, T., SVENNING, J.-C., EISERHARDT, W. L., PEDERSEN, D., BRIX, H., MUNCH KRISTIANSEN, S., KNADEL, M., GRÁNDEZ, C. & BALSLEV, H. 2012. Environment versus dispersal in the assembly of western Amazonian palm communities. Journal of Biogeography 39:13181332.CrossRefGoogle Scholar
LAURANCE, W. F., ANDRADE, A. S., MAGRACH, A., CAMARGO, J. C., VALSKO, J. J., CAMPBELL, M., FEARNSIDE, P. M., EDWARDS, W., LOVEJOY, T. E. & LAURANCE, S. G. 2014. Long-term changes in liana abundance and forest dynamics in undisturbed Amazonian forests. Ecology 95:16041611.CrossRefGoogle ScholarPubMed
LEGENDRE, P. & GALLAGHER, E. D. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129:271280.CrossRefGoogle ScholarPubMed
LOZANO, P. & KLITGAARD, B. B. 2006. The genus Machaerium (Leguminosae: Papilionoideae: Dalbergieae) in Ecuador. Brittonia 58:124150.CrossRefGoogle Scholar
MACÍA, M. J. & SVENNING, J.-C. 2005. Oligarchic dominance in western Amazonian plant communities. Journal of Tropical Ecology 21:613626.CrossRefGoogle Scholar
NABE-NIELSEN, J. 2001. Diversity and distribution of lianas in a neotropical rain forest, Yasuní National Park, Ecuador. Journal of Tropical Ecology 17:119.CrossRefGoogle Scholar
NABE-NIELSEN, J. 2002. Growth and mortality rates of the liana Machaerium cuspidatum in relation to light and topographic position. Biotropica 34:319322.CrossRefGoogle Scholar
NABE-NIELSEN, J. 2004. Demography of Machaerium caspidatum, a shade-tolerant liana. Journal of Tropical Ecology 20:505516.CrossRefGoogle Scholar
NABE-NIELSEN, J. & HALL, P. 2002. Environmentally induced clonal reproduction and life history traits of the liana Machaerium cuspidatum in an Amazonian rain forest, Ecuador. Plant Ecology 162:215226.CrossRefGoogle Scholar
PHILLIPS, O. L., MARTÍNEZ, R. V., ARROYO, L., BAKER, T. R., KILLEEN, T., LEWIS, S. L., MALHI, Y., MENDOZA, A. M., NEILL, D., VARGAS, P. N., ALEXIADES, M., CERÓN, C., FIORE, A. D., ERWIN, T., JARDIM, A., PALACIOS, W., SALDIAS, M. & VINCETI, B. 2002. Increasing dominance of large lianas in Amazonian forests. Science 418:770774.Google ScholarPubMed
PHILLIPS, O., BAKER, T., ARROYO, L., HIGUCHI, N., KILLEEN, T., LAURANCE, W., LEWIS, S., LLOYD, J., MALHI, Y. & MONTEAGUDO, A. 2004. Pattern and process in Amazon tree turnover, 1976–2001. Philosophical Transactions of the Royal Society B: Biological Sciences 359:381407.CrossRefGoogle ScholarPubMed
PHILLIPS, O. L., ARAGÃO, L. E., LEWIS, S. L., FISHER, J. B., LLOYD, J., LÓPEZ-GONZÁLEZ, G., MALHI, Y., MONTEAGUDO, A., PEACOCK, J. & QUESADA, C. A. 2009. Drought sensitivity of the Amazon rainforest. Science 323:13441347.CrossRefGoogle ScholarPubMed
PITMAN, N. C., TERBORGH, J. W., SILMAN, M. R., NÚÑEZ, V. P., NEILL, D. A., CERÓN, C. E., PALACIOS, W. A. & AULESTIA, M. 2001. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82:21012117.CrossRefGoogle Scholar
PUTZ, F. E. 1984. The natural history of lianas on Barro Colorado Island, Panama. Ecology 65:17131724.CrossRefGoogle Scholar
QUEENBOROUGH, S. A., BURSLEM, D. F., GARWOOD, N. C. & VALENCIA, R. 2007. Habitat niche partitioning by 16 species of Myristicaceae in Amazonian Ecuador. Plant Ecology 192:193207.CrossRefGoogle Scholar
SCHNITZER, S. A. & BONGERS, F. 2002. The ecology of lianas and their role in forests. Trends in Ecology and Evolution 17:223230.CrossRefGoogle Scholar
SCHNITZER, S. A., VAN DER HEIJDEN, G. M. F., MASCARO, J. & CARSON, W. P. 2014. Lianas in gaps reduce carbon accumulation in a tropical forest. Ecology 95:30083017.CrossRefGoogle Scholar
SVENNING, J.-C. 1999. Microhabitat specialization in a species-rich palm community in Amazonian Ecuador. Journal of Ecology 87:5565.CrossRefGoogle Scholar
SVENNING, J.-C. 2002. Crown illumination limits the population growth rate of a neotropical understorey palm (Geonoma macrostachys, Arecaceae). Plant Ecology 159:185199.CrossRefGoogle Scholar
SVENNING, J.-C., HARLEV, D., SØRENSEN, M. M. & BALSLEV, H. 2009. Topographic and spatial controls of palm species distributions in a montane rain forest, southern Ecuador. Biodiversity and Conservation 18:219228.CrossRefGoogle Scholar
TER STEEGE, H., PITMAN, N. C., SABATIER, D., BARALOTO, C., SALOMÃO, R. P., GUEVARA, J. E., PHILLIPS, O. L., CASTILHO, C. V., MAGNUSSON, W. E. & MOLINO, J.-F. 2013. Hyperdominance in the Amazonian tree flora. Science 342:1243092.CrossRefGoogle ScholarPubMed
TOBIN, M. F., WRIGHT, A. J., MANGAN, S. A. & SCHNITZER, S. A. 2012. Lianas have a greater competitive effect than trees of similar biomass on tropical canopy trees. Ecosphere 3: art20.CrossRefGoogle Scholar
TUOMISTO, H., POULSEN, A. D., RUOKOLAINEN, K., MORAN, R. C., QUINTANA, C., CELI, J. & CAÑAS, G. 2003. Linking floristic patterns with soil heterogeneity and satellite imagery in Ecuadorian Amazonia. Ecological Applications 13:352371.CrossRefGoogle Scholar
VAN REEUWIJK, L. 2002. Procedures for soil analysis. International Soil Reference and Information Centre, Wageningen. 197 pp.Google Scholar
VORMISTO, J., PHILLIPS, O., RUOKOLAINEN, K., TUOMISTO, H. & VÁSQUEZ, R. 2000. A comparison of fine-scale distribution patterns of four plant groups in an Amazonian rainforest. Ecography 23:349359.CrossRefGoogle Scholar
ZUUR, A., IENO, E. N., WALKER, N., SAVELIEV, A. A. & SMITH, G. M. 2009. Mixed effects models and extensions in ecology with R. Springer Science & Business Media, New York. 574 pp.CrossRefGoogle Scholar