Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T14:10:21.909Z Has data issue: false hasContentIssue false

The toxin from Gymnodinium veneficum Ballantine

Published online by Cambridge University Press:  11 May 2009

B. C. Abbott
Affiliation:
The Plymouth Laboratory
Dorothy Ballantine
Affiliation:
The Plymouth Laboratory

Extract

Methods of extraction of the toxin from cultures of Gymnodinium veneficum are described. This is now done by dialysis and evaporation under reduced pressure. The toxin molecule must be large, as it cannot penetrate a dialysis membrane; it is soluble in water and the lower alcohols, but insoluble in ether and chloroform. It is unstable in acids, turning into another toxic product, and is decomposed by hot alkali, though in neutral solution is more or less thermostable. The toxin as it occurs in sea water is not the same as paralytic shellfish poison, but there are some resemblances between this and the 'acid extract', though much more work is needed to check this point.

The action of the toxin on a variety of animals is described, and an attempt is made to devise an approximate assay technique using gobies as the test animals.

The action has also been observed on a range of isolated preparations, and although the final conclusion as to the mode of action is not quite clear, we feel confident that the site of action in whole animals is in the nervous system, probably acting on ganglion transmission. With regard to the mode of action it depolarizes nerve and muscle membranes. It also abolishes the potential across frog skin without measurably altering the skin resistance.

This depolarization probably occurs by interference with the sodium exchange mechanism, allowing rapid entry of sodium into the cells.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1957

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, B. C. & Ritchie, J. M., 1951. The onset of shortening in striated muscle. J. Physiol., Vol. 113, pp. 336–45.CrossRefGoogle ScholarPubMed
Babkin, B. P., Bowie, D. J. & Nicholls, J. V. V., 1933. Structure and reactions to stimuli of arteries (and conus) in the elasmobranch genus Raja. Contr. Canad. Biol., Vol. 8, pp. 207–25.Google Scholar
Bainbridge, R., 1953. Studies on the interrelationships of zooplankton and phytoplankton. J. mar. biol. Ass. U.K., Vol. 32, pp. 385447.CrossRefGoogle Scholar
Ballantine, Dorothy, 1956. Two new marine species of Gymnodinium isolated from the Plymouth area. J. mar. biol. Ass. U.K., Vol. 35, pp. 467–74.CrossRefGoogle Scholar
Ballantine, Dorothy & Morton, J. E., 1956. Filtering, feeding and digestion in the lamellibranch Lasaea rubra. J. mar. biol. Ass. U.K., Vol. 35, pp. 241–74.Google Scholar
Brongersma-Sanders, M., 1948. The importance of upwelling water to vertebrate paleontology and oil geology. Verh. Akad. Wet. Amst., Afd. natuurkunde, Sect. 2, Deel 45. No. 4, 112 pp.Google Scholar
Davis, C. C, 1948. Gymnodinium brevis n.sp., a cause of discolored water and animal mortality in the Gulf of Mexico. Bot. Gaz., Vol. 109, pp. 358–60. (Contrib. no. 17, Univ. Miami Mar. Lab.)CrossRefGoogle Scholar
Fingerman, M., Forester, R. H. & Stover, J. H., 1953. Action of shellfish poison on peripheral nerve and skeletal muscle. Proc. Soc. exp. Biol., N.Y., Vol. 84, pp. 643–6.CrossRefGoogle ScholarPubMed
Graham, J. & Gerard, R. W., 1946. Membrane potentials and excitation of impaled single muscle fibres. J. cell. comp. Physiol., Vol. 19, pp. 135–44.Google Scholar
Hashimoto, Y. & Migita, M., 1952. On the shellfish poisons. 1. Inadequacy of acidulated alcohols with HC1 as solvent. Bull. Tokai Fish. Res. Lab., Vol. 3 B, pp. 7784.Google Scholar
Hayes, Helen L. & Austen, T. S., 1951. The distribution of discolored sea water. Tex. J. Sci., Vol. 3, PP. 530–41.Google Scholar
Hill, A. V., 1949 a. Myothermic methods. Proc. roy. Soc. B, Vol. 136, pp. 228–41.Google ScholarPubMed
Hill, A. V., 1949 b. Is relaxation an active process?Proc. roy. Soc. B, Vol. 136, pp. 420–35.Google Scholar
Ingle, R. M., 1954. Irritant gases associated with Red Tide. Univ. Miami mar. Lab., Special Service Bull., No. 9 (Florida State Bd of Conservation.)Google Scholar
Kellaway, C. H., 1935. The action of mussel poison on the nervous system. Aust. J. exp. Biol. med. Sci., Vol. 13, pp. 7994.CrossRefGoogle Scholar
Keynes, R. D. & Lewis, P. R., 1951. The resting exchange of radioactive potassium in crab nerve. J. Physiol, Vol. 113, pp. 7398.CrossRefGoogle ScholarPubMed
Koch, H. J., 1939. La cause des empoissonements paralytiques provoque par les moules. C.R. Ass. Franc. Avanc. Set., Sean. Sess. 63, Liége, pp. 654–7.Google Scholar
Koefoed-Johnsen, V. & Ussing, H. H., 1956. Nature of the frog skin potential. XX Congr. int. Physiol, pp. 511512.Google Scholar
Koefoed-Johnsen, V., Ussing, H. H. & Zerahn, K., 1952. The origin of the short circuit current in the adrenaline stimulated frog skin. Acta physiol. scand., Bd. 27, pp. 3848.CrossRefGoogle Scholar
Ling, G., 1948. Effect of stretch on membrane potential in frog muscle. Fed. Proc. Part 1, vol. 7, p. 72.Google ScholarPubMed
Marshall, S. M. & Orr, A. P., 1955. On the biology of Calanus finmarchicus. VIII. Food uptake, assimilation and excretion in adult and stage V Calanus. J. mar. biol. Ass. U.K., Vol. 34, PP. 495529.CrossRefGoogle Scholar
Medcof, J. C, Leim, A. H., Needler, A. R., Needler, A. W. H., Gibbard, J. & Naubert, J., 1947. Paralytic shellfish poisoning on the Canadian Atlantic coast. Bull. Fish. Res. Bd Can., Vol. 75, pp. 132.Google Scholar
Müller, H., 1935. The chemistry and toxicity of mussel poison. J. Pharmacol, Vol. 53, PP. 6789.Google Scholar
Needler, A. B., 1949. Paralytic shellfish poisoning and Gomaulax tamarensis. J. Fish. Res. Bd Can., Vol. 7, pp. 490504.CrossRefGoogle Scholar
Nightingale, H. W., 1936. Red Water Organisms: Their Occurrence and Influence upon Marine Aquatic Animals, with Special Reference to Shellfish in Waters of the Pacific Coast, 24 pp. Seattle, Washington: Argus Press.Google Scholar
Prinzmetal, M., Sommer, H. & Leake, C. D., 1932. The pharmacological action of ‘mussel poison’. J. Pharmacol, Vol. 46, pp. 6375.Google Scholar
Riegel, B., Stanger, D. W., Wilkholm, D. M., Mold, J. D. & Sommer, H., 1949 a. Paralytic shellfish poison. IV. Bases accompanying the poison. J. biol. Chem., Vol. 177, pp. 16.CrossRefGoogle ScholarPubMed
Riegel, B., Stanger, D. W., Wilkholm, D. M., Mold, J. D. & Sommer, H., 1949 b Paralytic shellfish poison. V. The primary source of the poison, the marine plankton organism, Gonyaulax catenella. J. biol. Chem., Vol. 177, pp. 711.CrossRefGoogle ScholarPubMed
Sommer, H. & Meyer, K. F., 1937. Paralytic shellfish poisoning. Arch. Path. (Lab. Med.), Vol. 24, pp. 560–98.Google Scholar
Sommer, H., Monnier, R. P., Riegel, B., Stanger, D. W., Mold, J., Wikholm, D. M. & Kiralis, E. S., 1948. Paralytic shellfish poison. I. Occurrence and concentration by ion exchange. J. Amer. chem. Soc., Vol. 70, pp. 1015–18.CrossRefGoogle ScholarPubMed
Sommer, H., Riegel, B., Stanger, D. W., Mold, J. D., Wilkholm, D. M. & McCaughey, Margaret B., 1948. Paralytic shellfish poison. II. Purification by chromatography. J. Amer. chem. Soc, Vol. 70, pp. 1019–21.CrossRefGoogle ScholarPubMed
Sommer, H., Whedon, W. F., Kofoid, C. A. & Stohler, R., 1937. The relation of paralytic shellfish poison to certain plankton organisms of the genus Gonyaulax. Arch. Path. (Lab. Med.), Vol. 24, pp. 537–59.Google Scholar
Stephenson, N. R., Edwards, H. I., Macdonald, B. F. & Pugsley, L. I., 1955. Biological Assay of the toxin from shellfish. Canad.J. Biochem. Physiol., Vol. 33, pp. 849–57.CrossRefGoogle ScholarPubMed
Ussing, H. H. & Zerahn, K., 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta physiol. scand., Bd. 23, pp. 110–27.CrossRefGoogle Scholar
Welsh, J. H., 1936. Chemical mediation in crustaceans. I. The occurrence of acetylcholine in nervous tissues and its action on the decapod heart. J. exp. Biol., Vol. 16, pp. 198219.CrossRefGoogle Scholar
Woodcock, A. H., 1948. Note concerning human respiratory irritation associated with concentrations of plankton and mass mortality of marine organisms. J. mar. Res., Vol. 7, pp. 5662.Google Scholar