Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T14:02:09.520Z Has data issue: false hasContentIssue false

Matching theorems, fixed point theorems and minimax inequalities without convexity

Published online by Cambridge University Press:  09 April 2009

Xie-Ping Ding
Affiliation:
Department of MathematicsSichuan Normal UniversityChengdu, Sichuan People's Republic of China
Kok-Keong Tan
Affiliation:
Department of Mathematics, Statistics and Computing ScienceDalhousie UniversityHalifax, Nova ScotiaCanada, B3H 3J5
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Matching theorems, fixed point theorems and minimax inequalities are obtained in H-spaces which generalize the corresponding results of Bae-Kim-Tan, Browder, Fan, Horvath, Kim, Ko-Tan, Shih-Tan, Takahashi, Tan and Tarafdar to non-compact and/or non-convex settings.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Allen, G., ‘Variational inequalities, complementarity problems, and duality theorems’, J. Math. Anal. Appl. 58 (1977), 110.CrossRefGoogle Scholar
[2]Bae, J. S., Kim, W. K. and Tan, K. K., ‘Another generalization of Ky Fan's minimax inequality and its applications’, submitted.Google Scholar
[3]Bardaro, C. and Ceppitelli, R., ‘Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities’, J. Math. Anal. Appl. 132 (1988), 484490.CrossRefGoogle Scholar
[4]Ben-El-Mechaiekh, H., Deguire, P. and Granas, A., ‘Points fixes et coincidences pour les fonctions multivoques II. (Applications de type ø et ø*)’, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 381384.Google Scholar
[5]Brézis, H., Nirenberg, L. and Stampacchia, G., ‘A remark on Ky Fan's minimax principle’, Bull. Un. Mat. Ital. (4) 6 (1972), 293300.Google Scholar
[6]Browder, F. E., ‘Coincidence theorems, minimax theorems, and variational inequalities’, Contemp. Math. 26 (1984), 6780.CrossRefGoogle Scholar
[7]Ding, X. P., Kim, W. K. and Tan, K. K., ‘A new minimax inequality on H-spaces with applications’ to appear in Bull. Austral. Math. Soc.Google Scholar
[8]Ding, X. P. and Tan, K. K., ‘Fixed point theorems and minimax inequalities without convexity’, submitted.Google Scholar
[9]Ding, X. P. and Tan, K. K., ‘Minimax inequality of von Neumann type and system of inequalities without convexity’, submitted.Google Scholar
[10]Ding, X. P. and Tan, K. K., ‘Non-convex generalizations of results on set with convex sections’, submitted.Google Scholar
[11]Fan, K., ‘A generalization of Tychonoff's fixed point theorem’, Math. Ann. 142 (1961), 305310.CrossRefGoogle Scholar
[12]Fan, K., ‘A minimax inequality and applications’, Inequalities, Vol. III, (edited by Shisha, O.), pp. 103113, (Academic Press, New York, 1972).Google Scholar
[13]Fan, K., ‘Some properties of convex sets related to fixed point theorems’, Math. Ann. 226 (1984), 519537.CrossRefGoogle Scholar
[14]Horvath, C., ‘Point fixes et coincidences pur les applications multivoques sans convexité’, C. R. Acad. Sci. Paris 296 (1983), 403406.Google Scholar
[15]Horvath, C., ‘Point fixes et coincidences dans les espaces topologiques compacts contractiles’, C. R. Acad. Sci. Paris 299 (1984), 519521.Google Scholar
[16]Horvath, C., ‘Some results on multivalued mappings and inequalities without convexity’, Non-linear and convex analysis, edited by Lin, B. L. and Simons, S., pp. 99106, (Marcel Dekker, 1987).Google Scholar
[17]Kim, W. K., ‘Some applications of the Kakutani fixed point theorem’, J. Math. Anal. Appl. 121 (1987), 119122.CrossRefGoogle Scholar
[18]Knaster, B., Kuratowski, C. and Mazurkiewicz, S., ‘Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe’, Fund. Math. 14 91929), 132137.CrossRefGoogle Scholar
[19]Ko, H. M. and Tan, K. K., ‘Coincidence theorems and matching theorems’, submitted.Google Scholar
[20]Shih, M. H. and Tan, K. K., ‘A further generalization of Ky Fan's minimax inequality and its applications’, Studia Math. 78 (1984), 279287.CrossRefGoogle Scholar
[21]Shih, M. H. and Tan, K. K., ‘The Ky Fan minimax principle, sets with convex sections, and variational in equalities’, Differential geometry, calculus of variations, and their applications, edited by Rassias, G. M. and Rassias, T. M., Rassias, T. M., pp. 471481, (Marcel Dekker, 1985).Google Scholar
[22]Shih, M. H. and Tan, K. K., ‘Shapley selections and covering theorems of simplexes’, Nonlinear and convex analysis edited by Lin, B. L., and Simons, S., pp. 245251, (Marcel Dekker, 1987).Google Scholar
[23]Shih, M. H. and Tan, K. K., ‘A minimax inequality and Browder-Hartman-Stampacchia variational inequalitiés for multi-valued monotone operators’, Proc. Fourth Franco-SEAMS Conference, (Chiang Mai, Thailand, 1988).Google Scholar
[24]Shih, M. H. and Tan, K. K., ‘A geometric property of convex sets with applications to minimax type inequalities and fixed point theorems’, J. Austral. Math. Soc. Ser. A 45 (1988), 169183.CrossRefGoogle Scholar
[25]Takahashi, W., ‘Fixed point, minimax, and Hahn-Banach theorems’, Nonlinear functional analysis and its applications, Part 2, pp. 419427, (Proc. Sympos. Pure Math., vol. 45, 1986).CrossRefGoogle Scholar
[26]Tan, K. K., ‘Comparison theorems on minimax inequalities, variational inequalities, and fixed point theorems’, J. London Math. Soc. 28 (1983), 555562.CrossRefGoogle Scholar
[27]Tarafdar, E., ‘On minimax principles and sets with convex sections’, Publ. Math. Debrecen 29 (1982), 219226.CrossRefGoogle Scholar
[28]Yen, C. L., ‘A minimax inequality and its applications to variational inequalities’, Pacific J. Math. 97 (1981), 477481.CrossRefGoogle Scholar
[29]Zhou, J. X. and Chen, G., ‘Diagonal convexity conditions for problems in convex analysis and quais-variational inequalities’, J. Math. Anal. Appl. 132 (1988), 213225.CrossRefGoogle Scholar