Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T17:19:25.125Z Has data issue: false hasContentIssue false

REVERSE MATHEMATICS OF FIRST-ORDER THEORIES WITH FINITELY MANY MODELS

Published online by Cambridge University Press:  18 August 2014

DAVID R. BELANGER*
Affiliation:
DEPARTMENT OF MATHEMATICS CORNELL UNIVERSITY ITHACA, NY 14850-4201, USAE-mail: [email protected]

Abstract

We examine the reverse-mathematical strength of several theorems in classical and effective model theory concerning first-order theories and their number of models. We prove that, among these, most are equivalent to one of the familiar systems RCA0, WKL0, or ACA0. We are led to a purely model-theoretic statement that implies WKL0 but refutes ACA0 over RCA0.

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chang, C. C. and Keisler, H. Jerome, Model theory, third ed., Studies in Logic and the Foundations of Mathematics, vol. 73, North-Holland Publishing Co., Amsterdam, 1990.Google Scholar
Csima, Barbara F., Harizanov, Valentina S., Miller, Russell, and Montalbán, Antonio, Computability of Fraïssé limits. this Journal, vol. 76 (2011), no. 1, pp. 6693.Google Scholar
Ehrenfeucht, Andrzej, Separable theories. Bulletin L’Académie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques, vol. 9 (1961), pp. 1719.Google Scholar
Engeler, Erwin, Äquivalenzklassen von n-Tupeln. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 5 (1959), pp. 340345.Google Scholar
Friedman, Harvey M., Some systems of second order arithmetic and their use. Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, Canadian Mathematical Society, Montreal, Quebec, 1975, pp. 235242.Google Scholar
Friedman, Harvey M., Systems of second order arithmetic with restricted induction, i, ii (abstracts). this Journal, vol. 41 (1976), pp. 557559.Google Scholar
Friedman, Harvey M., Simpson, Stephen G., and Smith, Rick L., Countable algebra and set existence axioms. Annals of Pure and Applied Logic, vol. 25 (1983), no. 2, pp. 141181.Google Scholar
Gončarov, Sergei S., Strong constructivizability of homogeneous models. Algebra i Logika, vol. 17 (1978), no. 4, pp. 363388.Google Scholar
Harizanov, Valentina S., Pure computable model theory. Handbook of recursive mathematics, Vol. 1, Studies in Logic and the Foundations of Mathematics, vol. 138, North-Holland, Amsterdam, 1998, pp. 3114.Google Scholar
Harris, Kenneth, Reverse mathematics of saturated models. Unpublished note. Availablehttp://kaharris.org/papers/reverse-sat.pdf, 2006.Google Scholar
Herrmann, E., On Lindenbaum functions of א0-categorical theories of finite similarity type. Bulletin L’Académie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques, vol. 24 (1976), no. 1, pp. 1721.Google Scholar
Hirschfeldt, Denis R., Lange, Karen, and Shore, Richard A., Induction, Bounding, weak combinatorial principles, and the homogenous model theorem. To appear.Google Scholar
Hirschfeldt, Denis R., Shore, Richard A., and Slaman, Theodore A., The atomic model theorem and type omitting. Transactions of the American Mathematical Society, vol. 361 (2009), no. 11, pp. 58055837.Google Scholar
Marker, David, Model theory, Graduate Texts in Mathematics, vol. 217, Springer-Verlag, New York, 2002.Google Scholar
Millar, Terrence S., A complete, decidable theory with two decidable models. this Journal, vol. 44 (1979), no. 3, pp. 307312.Google Scholar
Millar, Terrence S., Vaught’s theorem recursively revisited. this Journal, vol. 46 (1981), no. 2, pp. 397411.Google Scholar
Millar, Terrence S., Omitting types, type spectrums, and decidability.this Journal, vol. 48 (1983), no. 1, pp. 171181.Google Scholar
Paljutin, E. A., The algebras of formulae of countably categorical theories. Colloquium Mathematicum, vol. 31 (1974), pp. 157159.Google Scholar
Peretjat´kin, Mikhail G., A criterion for strong constructivizability of a homogeneous model. Algebra i Logika, vol. 17 (1978), no. 4, pp. 436454.Google Scholar
Ryll-Nardzewski, Czesław, On categoricity in power ≤ א0. Bulletin L’Académie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques, vol. 7 (1959), pp. 545548. (unbound insert).Google Scholar
Schmerl, James H., A decidable א0-categorical theory with a nonrecursive Ryll-Nardzewski function. Fundamenta Mathematicae, vol. 98 (1978), no. 2, pp. 121125.Google Scholar
Simpson, Stephen G., Subsystems of second order arithmetic, second ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009.CrossRefGoogle Scholar
Svenonius, Lars, א0-categoricity in first-order predicate calculus. Theoria (Lund), vol. 25 (1959), pp. 8294.Google Scholar
Venning, Michael Charles, Type structures of aleph-zero categorical theories, Ph.D. Thesis, Cornell University, ProQuest LLC, Ann Arbor, MI, 1976.Google Scholar