No CrossRef data available.
Article contents
Henryk Greniewski. Functors of the propositional calculus. VI Zjazd Matematyków Polskich, Warszawa 20–23 IX 1948, supplement to Annales de la Société Polonaise de Mathématique, vol. 22, Cracow1950, pp. 78–86. - Henryk Greniewski. Certain notions of the theory of numbers as applied to the propositional calculus. English with brief Polish summary. Časopis pro pěstováni matematiky a fysiky, vol. 74 (1950), pp. 132–136. - Henryk Greniewski. Groups and fields definable in the propositional calculus. Towarzystwo Naukowe Warszawskie, Sprawozdania z posiedzé wydzialu III nauk matematyczno fizycznych (Socété des Sciences et des Lettres de Varsovle, Comptes-rendus des séances de la classe III sciences mathématiques et physiques), vol. 43 (for 1950, pub. 1952), pp. 53–48. - H. Greniewski. Arithmetics of natural numbers as part of the bi-valued propositional calculus. Colloquium matkematicum, vol. 2 no. 3–4 (for 1951, pub. 1952), pp. 291–297.
Review products
Henryk Greniewski. Functors of the propositional calculus. VI Zjazd Matematyków Polskich, Warszawa 20–23 IX 1948, supplement to Annales de la Société Polonaise de Mathématique, vol. 22, Cracow1950, pp. 78–86.
Henryk Greniewski. Certain notions of the theory of numbers as applied to the propositional calculus. English with brief Polish summary. Časopis pro pěstováni matematiky a fysiky, vol. 74 (1950), pp. 132–136.
Henryk Greniewski. Groups and fields definable in the propositional calculus. Towarzystwo Naukowe Warszawskie, Sprawozdania z posiedzé wydzialu III nauk matematyczno fizycznych (Socété des Sciences et des Lettres de Varsovle, Comptes-rendus des séances de la classe III sciences mathématiques et physiques), vol. 43 (for 1950, pub. 1952), pp. 53–48.
Published online by Cambridge University Press: 12 March 2014
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Reviews
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1968