Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T06:27:23.578Z Has data issue: false hasContentIssue false

The structure and stability of accretion disks surrounding black holes with anomalous viscosity

Published online by Cambridge University Press:  01 April 2007

YUEQI CHEN
Affiliation:
Department of Physics, Nanchang University, Jiangxi, People's Republic of China ([email protected]; [email protected])
SANQIU LIU
Affiliation:
Department of Physics, Nanchang University, Jiangxi, People's Republic of China ([email protected]; [email protected])

Abstract.

The solution of the steady state of accretion disks surrounding non-rotating black holes is solved by numerical simulations, where we adopt a promising viscosity prescription (i.e. anomalous magnetic viscosity). We can describe the disk more exactly than other studies, because the viscosity we adopted is close to the truth accretion disk. In contrast to previous studies, the curve of the Mach number behaves differently owing to the decline of the local sound velocity with increasing radii.

The stability of these disks has been examined. We find that the O-mode (out-mode) is always unstable and its growth rate decreases monotonically with increasing wavelength, in the inner disk and in the outer disk. The I-mode (in-mode) is unstable in the outer disk, but stable in the inner disk when the wavelength is greater than a special value.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balbus, S. A. and Hawley, J. F. 1991 Astrophys. J. 376, 214.CrossRefGoogle Scholar
Balbus, S. A. and Hawley, J. F. 1998 Rev. Mod. Phys. 70, 1.CrossRefGoogle Scholar
Balbus, S. A. and Papaloizou, J. C. B. 1999 Astrophys. J. 521, 650.CrossRefGoogle Scholar
Blumenthal, G. R., Yang, L. T. and Lin, D. N. C. 1984 Astrophys. J. 287, 774.CrossRefGoogle Scholar
Chen, X. M. and Taam, R. E. 1993 Astrophys. J. 412, 254.CrossRefGoogle Scholar
Chandrasekhar, S. 1958 Stellar Structure. New York: Dover.Google Scholar
Coroniti, F. V. 1981 Astrophys. J. 244, 587.CrossRefGoogle Scholar
Dubrulle, B. 1992, Astron. Astrophys. 266, 592.Google Scholar
Eardley, D. X. and Lightman, A. P. 1975 Astrophys. J. 200, 187.CrossRefGoogle Scholar
Kato, S. 1978 Mon. Not. R. Astron. Soc. 185, 629.CrossRefGoogle Scholar
Lifshitz, E. M. and Pitaevskii, L. P. 1981 Physical Kinetics. Oxford: Pergamon, pp. 27, 122.Google Scholar
Li, X. Q. and Zhang, H. 2002 Astron. Astrophys. 390, 767.CrossRefGoogle Scholar
Muchotrzeb, B. and Paczynski, B. 1982 Acta Astron. 32, 1.Google Scholar
Papaloizou, J. C. B. and Stanley, G. Q. G. 1986 Mon. Not. R. Astron. Soc. 220, 593.CrossRefGoogle Scholar
Shakura, N. I. and Sunyaev, R. A. 1973 Astron. Astrophys. 24, 337.Google Scholar
Torkelsson, C. 1993 Astrophys. J. 274, 675.Google Scholar
Wallinder, F. H. 1991a Astron. Astrophys. 249, 107.Google Scholar
Zhou, A. P. and Li, X. Q. 2004 J. Plasma Phys. 70, 583.CrossRefGoogle Scholar