Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T15:03:06.610Z Has data issue: false hasContentIssue false

Partially transverse and partially longitudinal wave in non-uniform electron plasmas

Published online by Cambridge University Press:  31 January 2014

Hamid Saleem*
Affiliation:
National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
*
Email address for correspondence: [email protected]

Abstract

It is pointed out that in the slow time scale perturbations the displacement current is ignored but it does not imply that the electron density fluctuations vanish. The dispersion relation of the low-frequency electromagnetic wave described within the framework of electron magnetohydrodynamics (EMHD) is modified by taking into account the longitudinal effects. This wave can couple with plasma lower hybrid oscillations if ion dynamics is also considered. The low-frequency wave discussed here can have many applications in plasma transport and plasma opening switches.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bol'shov, L. A., Dreizin, Yu. A. and Dykhne, A. M. 1974 Pis'ma Zh. Edsp. Teor. Fiz. 19, 288; JETP Lett. 19, 168.Google Scholar
Brueckner, K. A. and Jorna, S. 1974 Rev. Mod. Phys. 46, 325.CrossRefGoogle Scholar
Eliasson, E., Shukla, P. K. and Pavlenko, V. P. 2009 Phys. Plasmas 16, 042306.Google Scholar
Eliasson, B. and Shukla, P. K. 2007 Phys. Rev. Lett. 99, 205005.CrossRefGoogle Scholar
Frushtman, A. and Strauss, H. R. 1992 Phys. Fluids B4 (6), 1397.Google Scholar
Huba, J. D. 1991 Phys. Fluids B3 (12), 3217.Google Scholar
Huba, J. D., Grossmann, J. M. and Ottinger, P. F. 1994 Phys. Plasmas 1 (10), 3444.Google Scholar
Jones, R. D. 1983 Phys. Rev. Lett. 51, 1269.CrossRefGoogle Scholar
Kingssep, A. A., Chukbar, K. V. and Yan'Kov, V. V. 1990 In: Reviews of Plasma Physics, Vol. 16 (ed. Kadomtsev, B. B.). New York: Consultants Bureau, p. 243.Google Scholar
Koepke, M. 2006 private communications. Laboratory experiments on the parallel electron velocity shear could potentially be done with the WVU Q Machine at West Virginia University USA.Google Scholar
Lazarian, A. 1992 Astron. Astrophys. 264, 326.Google Scholar
Oohara, W., Data, D. and Hatakeyama, R. 2005 Phys. Rev. Lett. 95, 175003.Google Scholar
Oohara, W. and Hatakeyama, R. 2003 Phys. Rev. Lett. 91, 205005.Google Scholar
Oohara, W., Kuwabara, Y. and Hatakeyama, R. 2007 Phys. Rev. E 75, 056403.Google Scholar
Raven, A., Willi, O. and Rumsby, R. T. 1978 Phys. Rev. Lett. 41, 554.Google Scholar
Saleem, H. 2007 Phys. Plasmas 14, 014505.Google Scholar
Saleem, H. 2009 In: Proc. ICTP Summer College on Plasma Physics and Int. Symp. on Cutting Edge Plasma Physics, 10–28 August 2009 (ed. Eliasson, B. and Shukla, P. K.). Trieste, Italy, 233 pp.Google Scholar
Stamper, J. A., McLean, E. A. and Ripin, B. H. 1978 Phys. Rev. Lett. 40, 1177.CrossRefGoogle Scholar
Stamper, J. A., Papadapoulos, K., Sudan, R. N., Dean, S. O., McLean, E. A. and Dawson, J. M. 1971 Phys. Rev. Lett. 26, 1012.Google Scholar