Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T14:59:24.607Z Has data issue: false hasContentIssue false

Modified Korteweg–de Vries theory of non-monotonic double layers in multi-species plasma

Published online by Cambridge University Press:  01 August 2007

T. H. KIM
Affiliation:
Manmin Research Center, 851 Guro-dong, Guro-gu, Seoul, South Korea ([email protected])
S. S. KIM
Affiliation:
Manmin Research Center, 851 Guro-dong, Guro-gu, Seoul, South Korea ([email protected]) Institute of Basic Sciences, Center for Foreign Studies, Hankuk University of Foreign Studies, Seoul, South Korea
H. Y. KIM
Affiliation:
Manmin Research Center, 851 Guro-dong, Guro-gu, Seoul, South Korea ([email protected]) School of Materials Science and Engineering, Seoul National University, Seoul, South Korea
J. H. HWANG
Affiliation:
Manmin Research Center, 851 Guro-dong, Guro-gu, Seoul, South Korea ([email protected])

Abstract

The analytic solution for the time stationary non-monotonic double layers in multi-species plasma is presented. This solution is the analytic extension of the monotonic double layer and the solitary hole. We have derived the modified Korteweg–de Vries equation in plasmas, taking account of negative ion effects. The effects of negative ion and density on the properties of the non-monotonic double layer are discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernhardt, P. A. 1984 J. Geophys. Res. 89, 3929.CrossRefGoogle Scholar
Bostrom, R. et al. 1988 Phys. Rev. Lett. 61, 82.CrossRefGoogle Scholar
Branscomb, L. M. 1964 Ann. Geophys. 20, 88.Google Scholar
Dubouloz, N. et al. 1993 J Geophys. Res. 98, 17415.CrossRefGoogle Scholar
Han, J. M. and Kim, K. Y. 1994 Plasma Phys. Control. Fusion 36, 1141.CrossRefGoogle Scholar
Hudson, M. K. et al. 1983 J. Geophys. Res. 88, 916.CrossRefGoogle Scholar
Kalita, B. C. and Das, R. 1998 Phys. Plasmas 5, 3588.CrossRefGoogle Scholar
Kalita, B. C. and Devi, N. 1993 Phys. Fluids 5, 440.CrossRefGoogle Scholar
Kim, K. Y. 1987 Phys. Fluids 30, 3686.CrossRefGoogle Scholar
Kim, S. S. and Kim, K. Y. 1998 Plasma Phys. Control. Fusion 40, 1313.CrossRefGoogle Scholar
Kim, T. H. 1999 MSc thesis, Hankuk University of Foreign Studies.Google Scholar
Kim, T. H. 2006 J. Korean Phys. Soc. 48, 150.Google Scholar
Kim, T. H. and Kim, H. Y. 2005 Commun. Nonlinear Sci. Numer. Simul. 10, 779.CrossRefGoogle Scholar
Kim, T. H., Kim, H. Y., Kim, S. S. and Hwang, J. H. 2005 Phys. Scripta 71, 306.CrossRefGoogle Scholar
Kim, T. H. and Kim, K. Y. 2001 Phys. Lett. A 286, 180.CrossRefGoogle Scholar
Kim, T. H. and Kim, K. Y. 2003 Phys. Scripta 68, 364.Google Scholar
Kim, T. H. and Kim, S. S. 2004 J. Korean Phys. Soc. 44, 1449.Google Scholar
Kim, T. H., Kim, S. S. and Kim, H. Y. 2004 Phys. Scripta 70, 157.CrossRefGoogle Scholar
Mishra, M. K. et al. 1995 Phys. Rev. E 51, 4790.CrossRefGoogle Scholar
Nakamura, Y. et al. 1997 Plasma Phys. Control. Fusion 39, 105.CrossRefGoogle Scholar
Roychoudhury, R., Das, G. C. and Sarma, J. 1999 J. Phys. Plasmas 6, 2721.CrossRefGoogle Scholar
Sato, T. and Okuda, H. 1980 Phys. Rev. Lett. 44, 740.CrossRefGoogle Scholar
Schamel, H. 1975 J. Plamsa Phys. 13, 139.Google Scholar
Schamel, H. 1979 Phys. Scripta 20, 336.CrossRefGoogle Scholar
Schamel, H. 2000 Phys. Plasmas 7, 4831.CrossRefGoogle Scholar
Singh, S. V. and Lakhina, G. S. 2001 Planet. Space Sci. 49, 107.CrossRefGoogle Scholar
Swider, W. 1988 Pure Appl. Geophys. 127, 403.CrossRefGoogle Scholar
Temerin, M. et al. 1982 Phys. Rev. Lett. 48, 1175.CrossRefGoogle Scholar
Verheest, F. 1988 J. Plasma 39, 71.CrossRefGoogle Scholar
Verheest, F. and Meuris, P. 1996 J. Phys. Soc. Japan 65, 2522.CrossRefGoogle Scholar
Yi, S. et al. 1996 Phys. Plasmas 3, 529.CrossRefGoogle Scholar