Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T01:56:56.373Z Has data issue: false hasContentIssue false

First experiments on ICRF discharge generation by a W7-X-like antenna in the Uragan-2M stellarator

Published online by Cambridge University Press:  28 October 2020

V. E. Moiseenko*
Affiliation:
Institute of Plasma Physics of the National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine
Yu. V. Kovtun
Affiliation:
Institute of Plasma Physics of the National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine
T. Wauters
Affiliation:
Laboratory for Plasma Physics, ERM/KMS, Brussels, Belgium
A. Goriaev
Affiliation:
Laboratory for Plasma Physics, ERM/KMS, Brussels, Belgium
A. I. Lyssoivan
Affiliation:
Laboratory for Plasma Physics, ERM/KMS, Brussels, Belgium
A. V. Lozin
Affiliation:
Institute of Plasma Physics of the National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine
R. O. Pavlichenko
Affiliation:
Institute of Plasma Physics of the National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine
A. N. Shapoval
Affiliation:
Institute of Plasma Physics of the National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine
S. M. Maznichenko
Affiliation:
Institute of Plasma Physics of the National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine
V. B. Korovin
Affiliation:
Institute of Plasma Physics of the National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine
E. D. Kramskoy
Affiliation:
Institute of Plasma Physics of the National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine
M. M. Kozulya
Affiliation:
Institute of Plasma Physics of the National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine
N. V. Zamanov
Affiliation:
Institute of Plasma Physics of the National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine
Y. V. Siusko
Affiliation:
Institute of Plasma Physics of the National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine
A. Yu. Krasiuk
Affiliation:
Institute of Plasma Physics of the National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine
V. S. Romanov
Affiliation:
Institute of Plasma Physics of the National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine
A. Alonso
Affiliation:
Laboratorio Nacional de Fusion, CIEMAT, Madrid, Spain
R. Brakel
Affiliation:
Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
A. Dinklage
Affiliation:
Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
D. Hartmann
Affiliation:
Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
Ye. Kazakov
Affiliation:
Laboratory for Plasma Physics, ERM/KMS, Brussels, Belgium
H. Laqua
Affiliation:
Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
J. Ongena
Affiliation:
Laboratory for Plasma Physics, ERM/KMS, Brussels, Belgium
T. Stange
Affiliation:
Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
*
Email address for correspondence: [email protected]

Abstract

In support of the ICRF experiments planned on the Wendelstein 7-X (W7-X) stellarator, i.e. fast ion generation, wall conditioning, target plasma production and heating, a first experimental study on plasma production has been made in the Uragan-2M (U-2M) stellarator using W7-X-like two-strap antenna. In all the experiments, antenna monopole phasing was used. The W7-X-like antenna operation with launched radiofrequency power of ~100 kW have been performed in helium (p = (4–14) × 10−2 Pa) with the vacuum vessel walls pre-loaded with hydrogen. Production of plasma with a density higher than 1012 cm−3 was observed near the first harmonic of the hydrogen cyclotron frequency. Operation at first hydrogen harmonic is feasible in W7-X future ICRF experiments.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Äkäslompolo, S., Drewelow, P., Gao, Y., Ali, A., Asunta, O., Bozhenkov, S., Fellinger, J., Ford, O. P., den Harder, N., Hartmann, D. et al. 2019 Validating fast-ion wall-load IR analysis-methods against W7-X NBI empty-torus experiment. J.Instrum. 14, P07018.CrossRefGoogle Scholar
Beletskii, A. A., Berezhnyj, V. L., Burchenko, P. Ya., Chechkin, V. V., Chernyshenko, V.Ya., Grigor’eva, L. I., Gubarev, S. P., Konovalov, V. G., Kulaga, A. E., Kurilo, D. V. et al. 2008 First results of the renewed URAGAN-2M torsatron. Probl. At. Sci. Technol. Ser.: Plasma Phys. 6, 1315.Google Scholar
Brakel, R., Hartmann, D., Grigull, P. & W7-AS Team 2001 ICRF wall conditioning experiments in the W7-AS stellarator. J.Nucl. Mater. 290, 11601164.CrossRefGoogle Scholar
Bykov, V. E., Georgievskij, A. V., Demchenko, V. V., Kuznetsov, Yu. K., Litvinenko, Yu. A., Longinov, A. V., Pavlichenko, O. S., Rudakov, V. A., Stepanov, K. N. & Tolok, V. T. 1990 URAGAN-2M: a torsatron with an additional toroidal field. Fusion Technol. 17, 140147.CrossRefGoogle Scholar
Carter, M. D., Lysojvan, A. I., Moiseenko, V. E., Nazarov, N. I., Shvets, O. M. & Stepanov, K. N. 1990 Plasma production using radiofrequency fields near or below the ion cyclotron range of frequencies. Nucl. Fusion 30, 723730.CrossRefGoogle Scholar
van Eeten, P., Kallmeyer, J. P., McNeely, P., Rust, N., Hartmann, D., Schacht, J., Naujoks, D., Degenkolbe, S., Vilbrandt, R., Boschthe, H. S. et al. 2019 W7-X NBI beam dump thermocouple measurements as safety interlock. Fusion Engng Des. 146, 13291333.CrossRefGoogle Scholar
Erckmann, V., Brand, P., Braune, H., Dammertz, G., Gantenbein, G., Kasparek, W., Laqua, H. P., Maassberg, H., Marushchenko, N. B., Michel, G. et al. 2007 Electron cyclotron heating for W7-X: physics and technology. Fusion Sci. Technol. 52, 291.CrossRefGoogle Scholar
Esser, H. G., Lyssoivan, A., Freisinger, M., Koch, R., Van Oost, G., Weschenfelder, F., Winter, J. & TEXTOR-ICRH-team 1997 ICRF wall conditioning at TEXTOR-94 in the presence of a 2.25 T magnetic field. J.Nucl. Mater. 241, 861866.CrossRefGoogle Scholar
Fidone, I. & Granata, G. 1971 Propagation of electromagnetic waves in a plasma with a sheared magnetic field. Nucl. Fusion 11, 133139.CrossRefGoogle Scholar
Gauthier, E., de la Cal, E., Beaumont, B., Becoulet, A., Gil, C., Grisolia, C., Grosman, A., Hutter, T., Kuus, H. & Ladurelle, L. 1997 Wall conditioning technique development in Tore Supra with permanent magnetic field by ICRF wave injection. J.Nucl. Mater. 241, 553558.CrossRefGoogle Scholar
Geiger, J., Beidler, C. D., Feng, Y., Maaβberg, H., Marushchenko, N. B. & Turkin, Y. 2015 Physics in the magnetic configuration space of W7-X. Plasma Phys. Control. Fusion 57, 014004.CrossRefGoogle Scholar
Gradic, D., Dinklage, A., Brakel, R., McNeely, P., Osakabe, M., Rust, N., Wolf, R. & the W7-X Team and the LHD Experimental Group 2015 Assessment of the plasma start-up in Wendelstein 7-X with neutral beam injection. Nucl. Fusion 55, 033002.CrossRefGoogle Scholar
Hayward, W. 1994 Introduction to Radio Frquency Design. ARRL. p. 138.Google Scholar
Hellsten, T. & Tennfors, E. 1984 Resonance surfaces in the ion cyclotron frequency range in toroidal systems. Phys. Scr. 30, 341345.CrossRefGoogle Scholar
Hu, J. S., Li, J. G. & HT-7 Team 2007 Differences of ICR cleanings in He, D2 and O2 for deposit removal and hydrogen release in HT-7. J.Nucl. Mater. 366, 206215.CrossRefGoogle Scholar
Hu, J. S., Li, J. G., Zhao, Y. P. & EAST Team 2008 He–ICR cleanings on full metallic walls in EAST full superconducting tokamak. J.Nucl. Mater. 376, 207210.CrossRefGoogle Scholar
Itikawa, Y. (Ed.) 2001 Elementary Particles, Nuclei and Atoms. Volume 17. Photon and Electron Interactions with Atoms, Molecules and Ions. Subvolume C. Interactions of Photons and Electrons with Molecules. Springer-Verlag.Google Scholar
Janev, R. K., Langer, W. D., Evans, K. Jr. & Post, D. E. Jr. 1987 Elementary Processes in Hydrogen-Helium Plasmas. Cross Sections and Reaction Rate Coefficients. Springer-Verlag.CrossRefGoogle Scholar
Kaneko, O., Takeiri, Y., Tsumori, K., Oka, Y., Osakabe, M., Ikeda, K. & LHD Experimental Group 2002 Analysis of plasma initiation by neutral beams in the Large Helical Device. Nucl. Fusion 42, 441447.CrossRefGoogle Scholar
Klima, R., Longinov, A. V. & Stepanov, K. N. 1975 High-frequency heating of plasma with two ion species. Nucl. Fusion 15, 11571171.CrossRefGoogle Scholar
Klinger, T., Andreeva, T., Bozhenkov, S., Brandt, C., Burhenn, R., Buttenschön, B., Fuchert, G., Geiger, B., Grulke, O., Laqua, H. P. et al. 2019 Overview of first Wendelstein 7-X high-performance operation. Nucl. Fusion 59, 112004.CrossRefGoogle Scholar
Komori, A., Yamada, H., Imagawa, S., Kaneko, O., Kawahata, K., Mutoh, K., Ohyabu, N., Takeiri, Y., Ida, K., Mito, T. et al. 2010 Goal and achievements of large helical device project. Fusion Sci. Technol. 58, 1.CrossRefGoogle Scholar
Korovin, V. B. & Kramskoy, E. D. 2012 Radio-frequency equipment for Uragan stellarators. Probl. At. Sci. Technol. Ser.: Plasma Phys. 6, 1921.Google Scholar
Kovtun, Y. V., Shapoval, A. N. & Siusko, Y. V. 2019 Observation of multiply charged states ions in a high-power pulsed reflex discharge. Plasma Sources Sci. Technol. 28, 105009.CrossRefGoogle Scholar
Kramida, A., Ralchenko, Y., Reader, J. & NIST ASD Team. 2019 NIST Atomic Spectra Database (ver. 5.7.1).Google Scholar
Li, J., Shimada, M., Zhao, Y., Hu, J., Gong, X., Yu, Y. W., Zhuo, G. Z. et al. 2011 Wall conditioning towards the utilization in ITER. J.Nucl. Mat. 415, S35.CrossRefGoogle Scholar
Lin, Y., Wukitch, S. J., Bonoli, P. T., Marmar, E., Mossessian, D., Nelson-Melby, E., Phillips, P., Porkolab, M., Schilling, G., Wolfe, S. et al. 2003 Ion cyclotron range of frequencies mode conversion electron heating in deuterium–hydrogen plasmas in the Alcator C-Mod tokamak. Plasma Phys. Control. Fusion 45, 1013.CrossRefGoogle Scholar
Lozin, A. V., Moiseenko, V. E., Grigor’eva, L. I., Kozulya, M. M., Krasyuk, A. Yu., Kulaga, A. E., Kramskoy, E. D., Lyssoivan, A. I., Maznichenko, S. M., Mironov, Yu. K. et al. 2013 Usage of three-half-turn antenna at the URAGAN-3M device. Probl. At. Sci. Technol. Ser.: Plasma Phys. 83 (1), 2729.Google Scholar
Lyashchenko, V. N., Ozherel’ev, F. I., Reva, S. N., Tsibliev, D. A. 2009 Synchronization system for experiments research installation Uragan-2M. J.Kharkiv Natl Univ. Phys. Ser. “Nuclei, Particles, Fields” 880, 113119.Google Scholar
Lyssoivan, A., Hartmann, D. A., Noterdaeme, J. M., Koch, R., Bobkov, V., Blackman, T., Braun, F., Cox, M., de Vries, P., Esser, H. G. et al. 2005 Development of ICRF wall conditioning technique on divertor-type tokamaks ASDEX Upgrade and JET. J.Nucl. Mater. 337, 456460.CrossRefGoogle Scholar
Lyssoivan, A., Douai, D., Koch, R., Ongena, J., Philipps, V., Schüller, F. C., VanEester, D., Wauters, T., Blackman, T., Bobkov, V. et al. 2012 Simulation of ITER full-field ICWC scenario in JET: RF physics aspects. Plasma Phys. Control. Fusion 54, 074014.CrossRefGoogle Scholar
Lyssoivan, A., Wauters, T., Tripsý, M., Bobkov, V., Crombé, K., Douai, D., Kreter, A., Nicolai, D., Noterdaeme, J.-M., Rohde, V. et al. 2014 Wave aspect of neutral gas breakdown with ICRF antenna in ICWC operation mode. In 41st EPS Conference on Plasma Physics, vol. 38. P2.030.Google Scholar
Lyssoivan, A. I., Moiseenko, V. E., Shvets, O. M. & Stepanov, K. N. 1992 Analysis of ICRF (ω < ωci) plasma production in large scale tokamaks. Nucl. Fusion 32, 13611372.CrossRefGoogle Scholar
Majeski, R., Rogers, J. H., Batha, S. H., Budny, R., Fredrickson, E., Grek, B., Hill, K., Hosea, J. C., LeBlanc, B., Levinton, F. et al. 1996 Mode conversion heating and current drive experiments in TFTR. Phys. Rev. Lett. 76, 764.CrossRefGoogle ScholarPubMed
Marushchenko, N. B., Aleynikov, P., Beidler, C. D., Dinklage, A., Geiger, J., Helander, P., Laqua, H. P., Maassberg, H., Turkin, Y. & W7-X Team 2019 Reduced field Scenario with X3 heating in W7-X. EPJ Web Conf. 203, 01006.CrossRefGoogle Scholar
Moiseenko, V. E. 1980 RF breakdown of a neutral gas by means of ions. Fiz. Plazmy 6, 11741178. (in Russian).Google Scholar
Moiseenko, V. E., Stadnik, Yu. S., Schvets, O. M., Stepanov, K. N., Volkov, E. D. & Tereshin, V. I. 2007 RF plasma production in Uragan-2M torsatron. AIP Conf. Proc. 933, 115118.CrossRefGoogle Scholar
Moiseenko, V. E., Berezhnyj, V. L., Bondarenko, V. N., Burchenko, P. Ya., Castejón, F., Chechkin, V. V., Chernyshenko, V. Ya., Dreval, M. B., Garkusha, I. E., Glazunov, G. P. et al. 2011 RF plasma production and heating below ion-cyclotron frequencies in Uragan torsatrons. Nucl. Fusion 51, 083036.CrossRefGoogle Scholar
Moiseenko, V. E., Stadnik, Yu. S., Lysoivan, A. I. & Korovin, V. B. 2013 Self-consistent modeling of radio-frequency plasma generation in stellarators. Plasma Phys. Rep. 39, 873881.CrossRefGoogle Scholar
Moiseenko, V. E., Lozin, O. V., Shapoval, A. M., Dreval, M. B., Kulyk, Y. S., Mironov, Y.K., Romanov, V. S., Pashnev, V. K., Sorokovoy, E. L., Petrushenya, A. A. et al. 2016 Progress in stellarator research at IPP-Kharkov. Nukleonika 61, 9197.CrossRefGoogle Scholar
Moiseenko, V. E., Lozin, A. V., Kozulia, M. M., Mironov, Yu. K., Romanov, V. S., Konovalov, V. G. & Shapoval, A. N. 2017 a Alfven plasma heating in stellarator Uragan-2M. Ukrainian J. Phys. 62, 311311.CrossRefGoogle Scholar
Moiseenko, V. E., Lyssoivan, A., Wauters, T., Tripský, M., Lozin, A. V., Pavlichenko, R. O., Kozulya, M. M., Dreval, M. B., Mironov, Yu. K., Romanov, V. S. et al. 2017 b Radio-frequency plasma start-up at Uragan-3M stellarator. Probl. At. Sci. Technol. Ser.: Plasma Phys. 1, 5459.Google Scholar
Moiseenko, V. E., Lozin, A. V., Kozulia, M. M., Korovin, V. B., Beletskii, A. A., Baron, D.I., Grigor’eva, L. I., Chechkin, V. V., Mironov, Yu. K., Romanov, V. S. et al. 2019 Three half-turn antennas start-up. Probl. At. Sci. Technol. Ser.: Plasma Phys. 1, 263266.Google Scholar
Moiseenko, V. E. & Tennfors, E. 1996 Localized global ICRF eigenmodes and conversion zones in a two-ion species tokamak. Plasma Phys. Control. Fusion 38, 21332142.CrossRefGoogle Scholar
Moiseenko, V. E., Wauters, T. & Lyssoivan, A. 2016 Lower hybrid resonance: field structure and numerical modelling. Probl. At. Sci. Technol. Ser.: Plasma Phys. 6, 4447.Google Scholar
Nührenberg, C. 2016 Free-boundary ideal MHD stability of W7-X divertor. Nucl. Fusion 56, 076010.CrossRefGoogle Scholar
Ongena, J., Messiaen, A., Van Eester, D., Schweer, B., Dumortier, P., Durodie, F., Kazakov, Ye. O., Louche, F., Vervier, M., Koch, R. et al. 2014 Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X. Phys. Plasmas 21, 061514.CrossRefGoogle Scholar
Pankratov, I. M., Beletskii, A. A., Berezhnyj, V. L., Burchenko, P. Ya., Chechkin, V. V., Grigor’eva, L. I., Hartmann, D., Koch, R., Konovalov, V. G., Kulaga, A. Ye. et al. 2010 Behavior of RF discharge plasmas in the Uragan-3M and Uragan-2M torsatrons. Contrib. Plasma Phys. 50, 520528.CrossRefGoogle Scholar
Pavlichenko, O. S. 1993 First results from the URAGAN-2M torsatron. Plasma Phys. Control. Fusion 35, B223B230.CrossRefGoogle Scholar
Pavlichenko, R. O., Zamanov, N. V. & Kulaga, A. E. 2017 First measurements of line electron density in Uragan-2M plasmas via 140 GHz heterodyne interferometer. Probl. At. Sci. Technol. Ser.: Plasma Phys. 1, 257260.Google Scholar
Pavlichenko, R. O., Zamanov, N. V. & Kulaga, A. E. 2018 A high speed 140 GHz microwave interferometer for density fluctuation measurements in Uragan-2M stellarator. Probl. At. Sci. Technol. Ser.: Plasma Phys. 6, 332335.Google Scholar
Pedersen, T. S., König, R., Jakubowski, M., Krychowiak, M., Gradic, D., Killer, C., Niemann, H., Szepesi, T., Wenzel, U., Ali, A. et al. 2019 First divertor physics studies in Wendelstein 7-X. Nucl. Fusion 59, 096014.CrossRefGoogle Scholar
Sorokin, A. A., Beigman, I. L., Bobashev, S. V., Richter, M. & Vainshtein, L. A. 2004 Total electron-impact ionization cross sections of Helium. J.Phys. B: At. Mol. Opt. Phys. 37, 3215.CrossRefGoogle Scholar
Tripský, M., Wauters, T., Lyssoivan, A., Bobkov, V., Schneider, P. A., Stepanov, I., Douai, D., Van Eester, D., Noterdaeme, J.-M., Van Schoor, M. et al. 2017 A PIC-MCC code RFdinity1d for simulation of discharge initiation by ICRF antenna. Nucl. Fusion 57, 126043.CrossRefGoogle Scholar
Voitsenya, V. S., Shapoval, A. N., Pavlichenko, R. O., Pankratov, I. M., Chechkin, V. V., Moiseenko, A. E., Lozin, A. V., Dreval, N. B., Grigor’eva, L. I., Konovalov, V. G. et al. 2014 Progress in stellarator research in Kharkov IPP. Phys. Scr. T161, 014009.CrossRefGoogle Scholar
Wauters, T., Brakel, R., Brezinsek, S., Dinklage, A., Goriaev, A., Laqua, H. P., Marsen, S., Moseev, D., Stange, T., Schlisio, G. et al. 2018 Wall conditioning by ECRH discharges and He-GDC in the limiter phase of Wendelstein 7-X. Nucl. Fusion 58, 066013.CrossRefGoogle Scholar
Wauters, T., Borodin, D., Brakel, R., Brezinsek, S., Brunner, K. J., Buermans, J., Coda, S., Dinklage, A., Douai, D., Ford, O. et al. 2020 Wall conditioning in fusion devices with superconducting coils. Plasma Phys. Control. Fusion 62, 034002.CrossRefGoogle Scholar
Wolf, R. C., Bozhenkov, S., Dinklage, A., Fuchert, G., Kazakov, Y. O., Laqua, H.P., Marsen, S., Marushchenko, N. B., Stange, T., Zanini, M. et al. 2019 Electron-cyclotron-resonance heating in Wendelstein 7-X: A versatile heating and current-drive method and a tool for in-depth physics studies. Plasma Phys. Control. Fusion 61, 014037.CrossRefGoogle Scholar
Zaleskij, Y. G., Kurilko, P. I., Nazarov, N. I., Plyusnin, V. V. & Shvets, O. M. 1989 Start-up of HF plasma discharge in the Uragan-3 torsatron. Fiz. Plazmy 15, 14241429. (in Russian).Google Scholar