Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T18:45:14.125Z Has data issue: false hasContentIssue false

New species of Harpactocarcinus from the Tethyan Eocene and their paleoecological setting

Published online by Cambridge University Press:  14 July 2015

Carrie E. Schweitzer
Affiliation:
Department of Geology, Kent State University Stark Campus, 6000 Frank Avenue NW, North Canton, Ohio 44720 USA,
Aubrey M. Shirk
Affiliation:
Department of Geology, Kent State University, Kent, Ohio 44242 USA, ,
Vlasta Ćosović
Affiliation:
Department of Geology and Paleontology, Faculty of Science, University of Zagreb, Croatia
Yavuz Okan
Affiliation:
Ankara üniversitesi Mühendislik Fakültesi Jeoloji Mühendisligi Bölümü, 06100 Beşevler, Ankara, Turkey, ,
Rodney M. Feldmann
Affiliation:
Department of Geology, Kent State University, Kent, Ohio 44242 USA, ,
Izzet Hoşgör
Affiliation:
Ankara üniversitesi Mühendislik Fakültesi Jeoloji Mühendisligi Bölümü, 06100 Beşevler, Ankara, Turkey, ,

Abstract

Two new species, Harpactocarcinus yozgatensis from the early Eocene (Ypresian) Yoncali Formation of Turkey and H. dalmatius from the middle Eocene (Bartonian) Foraminiferal limestones of Hvar Island, Croatia, are described. Harpactocarcinus yozgatensis suggests an early Eocene origin of the genus. Their discovery posits a more easterly point of origin for the genus than was previously known, a position which is supported by the foraminiferal assemblages of both localities. Evaluation of species referred to Harpactocarcinus has resulted in one new combination, Neozanthopsis achalzicus (Bittner in Abich, 1882).

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abich, H. 1882. Geologische Forschungen in den Kaukasusländern. II. Geologie des Armenischen Hochlandes. I. Westhälfte. A. Hölder, Wien, 488 p., 19 pls. Google Scholar
Adams, C. G. 1983. Speciation, phylogenesis, tectonism, climate and eustasy: Factors in the evolution of Cenozoic larger foraminiferal bioprovinces. In Sims, R. W., Price, J. H., and Whalley, P. E. (eds.), The emergence of the Biosphere. Systematic Association, special volume, 23:255289.Google Scholar
Akgün, F., Akay, E., and Erdogan, B. 2002. Tertiary terrestrial to shallow marine deposition in Central Anatolia: A palynological approach. Turkish Journal of Earth Science, 11:127160.Google Scholar
Bachmayer, F. and Mundlos, R. 1968. Die tertiären Krebse von Helmstedt bei Braunschweig, Deutschland. Annalen des Naturhistorischen Museums in Wien, 72:649692.Google Scholar
Bachmayer, F. and Nosan, A. 1959. Ein bemerkenswerter Crustaceenfund aus Gračišče bei Kubed (Nordistrien). Geologija (Ljubljana), 5:8085, pl. 1.Google Scholar
Barron, E. J. and Peterson, W. H. 1991. The Cenozoic ocean circulation based on ocean general circulation model results. Palaeogeography, Palaeoclimatology, Palaeoecology, 83:128.Google Scholar
Bassani, F. 1879. Vorläufige Mitteilungen über die Fischfauna der insel Lesina. Verhandlungen Geologische Reichsanstalt, 8:162170.Google Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C. III, and Aubry, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy. Society of Economic Paleontologists and Mineralogists, Special Publication, 54:129212.Google Scholar
Birgili, S., Yoldas, R., and Unalan, G. 1975. Cankırı-Corum havzasının jeolojisi ve Petrol olanakları (Geology and Petroleum potential of Cankırı-Corum Basin). Mineral Research and Exploration Institute of Turkey (MTA) Report 5621, 78 p.Google Scholar
Blow, W. H. 1959. Age, correlation, and biostratigraphy of the upper Tocuyo (San Lorenzo) and Pozón Formations, Eastern Falcón, Venezuela. Bulletins of American Paleontology, 39(178):67251, pls. 6–191.Google Scholar
Borović, I., Marinčič, S., and Majcen, Ž. 1976. Osnovna geološka karta SFRJ 1:100000, list Vis K33–33. (Basic geologic map of former Yugoslavia 1:100000, Sheet Vis K33–33). Institute of Geology Zagreb, Federal Geological Survey Beograd.Google Scholar
Brönnimann, P. 1952. Globigerinoita and Globigerinatheka, new genera from the Tertiary of Trinidad, B. W. I. Contributions of the Cushman Foundation for Foraminiferal Research, 3(1):2528, figs. 1, 2.Google Scholar
Brotzen, F. and Pozaryska, K. 1961. Foraminifères du Paléocène et de l'Eocène inférieur en Pologne septentrionale remarques paleogéographiques. Revue Micropaléontologie, 4(3):155166, pls. 1–4.Google Scholar
Butterlin, J., Vrielynck, B., Guiraud, R., Bignot, G., Colchen, M., Clemonte, J., Andreieff, P., Bellion, Y., Benkhelil, J., Cavelier, C., Cornee, J. J., Mercier de Lepinay, B., Montenat, C., Moreau, C., Poisson, A., and Vila, J. M. 1993. Lutetian palaeoenvironments (46 to 40 Ma). In Dercourt, J., Ricou, L. E., and Vrielynck, B. (eds.), Atlas Tethys Palaeoenvironmental Maps. EICIP-FRANLAB, Rueil-Malmaison.Google Scholar
Cole, W. S. 1928. A foraminiferal fauna from the Chapapote Formation in Mexico. Bulletins of American Paleontology, 14:146.Google Scholar
Ćosović, V., Drobne, K., and Moro, A. 2004. Paleoenvironmental model for Eocene foraminiferal limestones of the Adriatic carbonate platform (Istrian Peninsula). Facies, 50:6175.Google Scholar
Cushman, J. A. and Bermúdez, P. J. 1949. Some Cuban species of Globorotalia . Contributions from the Cushman Laboratory for Foraminiferal Research, 25(2):2645, pls. 5–8.Google Scholar
d'Archiac, A. 1850. Histoire des progrés de la Géologie de 1834 à 1849. Formation nummulitique de l'Espagne, 3:304 p.Google Scholar
d'Archiac, A. and Haime, J. 1853. Description des animaux fossiles, du groupe nummulitique de l'Inde. Précédé d'un résumé géologique et d'un Monographie des Nummulites, 2 vols. Gide et J. Baudry, Paris, 373 p., 36 pls. Google Scholar
De Angeli, A. and Beschin, C. 2001. I Crostacei fossili del territorio Vicentino. Natura Vicentina, 5:554.Google Scholar
de la Harpe, P. 1926. Matériaux pour servir à une monographie des Nummulites et Assilines (éd. Rozlozsnik). Magyar Allami Földtani Intézet, 27(1):1102.Google Scholar
Deshayes, G. P. 1830. Encyclopédie Méthodique. Histoire Naturelle des Vers. Volume 2. Mme. Veuve Agasse, Paris, 594 p.Google Scholar
Desmarest, A. G. 1822. Malacostracés, p. 138425. In Dictionnaire des Sciences Naturelles. Volume 28. F. G. Levreault, Paris, France.Google Scholar
d'Orbigny, A. D. 1826. Tableau méthodique de la classe des Céphalopodes. Annales des Sciences Naturelles, Paris, series 1, 7:245315, pls. 10–17..Google Scholar
Drooger, C. W. 1993. Radial foraminifera; morphometrics and evolution. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afd. Natuurkunde, Eerste Reeks, deel 41, V–VIII:1242.Google Scholar
Erdogan, B., Akay, E., and Ugur, M. S. 1996. Geology of the Yozgat region and evolution of the collisional Cankırı Basin. International Geology Review, 38:788806.CrossRefGoogle Scholar
Finlay, H. J. 1939. New Zealand foraminifera: Key species in stratigraphy—no. 2. Transactions of the Royal Society of New Zealand, 69:89128.Google Scholar
Glaessner, M. F. 1929. Crustacea Decapoda, p. 1464. In Pompeckj, J. F. (ed.), Fossilium Catalogus Pt. I, Animalia. Pt. 41. W. Junk, Berlin, Germany.Google Scholar
Gorjanović Kramberger, D. 1892. Aigialosaurus. Novi gušter iz krednih škriljava otoka Hvara s obzirom na opisane jur lacertide Komena i Hvara. (Aigialosaurus. New lizard from Cretaceous deposits from the island of Hvar in respect to known lacerids from Komen and Hvar). Radovi Jugoslavenske Akademije Znanosti i Umjetnosti, 109:96123.Google Scholar
Gorjanović Kramberger, D. 1895. Fosilne ribe Komena, Mrzleka, Hvara i M. Libanona uz dodatak o oligocenskim ribama Tüffera, Zagora i Trifalja (Fossils fishes from Komen, Mrzlek, Hvar and M. Libanon and an addition about Oligocene fishes from Tüffer, Zagor and Trifalj). Djela Jugoslavenske Akademije Znanosti i Umjetnosti, 16:167.Google Scholar
Guinot, D. 1977. Propositions pour une nouvelle classification des Crustacés Décapodes Brachyoures. Compte Rendu Académie des Sciences de Paris, serie D, 285:10491052.Google Scholar
Gümbel, C. W. 1868. Beitrage zur foraminiferenfauna der nordalpinen, alteren Eocängebilde oder der Kressenberger Nummulitenschichten. Bayerische Akademie der Wissenschaften zur Berlin, Abhandlungen, Mathematische-Physikalische Klasse, 10:579730.Google Scholar
Gümbel, C. W. 1872. Über zwei jurassische Vorläufer des Foraminiferan-Geschlechtes Nummulina und Orbitulites . Neues Jahrbuch für Mineralogie, 241260, pl. 6–7.Google Scholar
Herak, M., Marinčič, S., and Polšak, A. 1976. Geologija otoka Hvara (Geology of Hvar Island). Acta Geologica 9/1, (Prirodoslovna Istraživanja 42):514.Google Scholar
Hottinger, L. 1983. Processes determining the distribution of larger foraminifera in space and time, p. 239253. In Meulenkamp, J. E. (ed.), Reconstruction of Marine Paleoenvironments. Utrecht Micropaleontological Bulletin 30.Google Scholar
Hottinger, L. 1996. Sels nutritifs et biosedimentation. Bulletin de la Societé Geologique de France, 169:99107.Google Scholar
Hottinger, L., Caus, E., Drobne, K., and Leppig, U. 1987. Paleobiogeography of larger Foraminifera from late Cretaceous to early Paleogene. Abstracts of the International Symposium on the Evolution of the Karstic Carbonate Platform, 1–6 June 1987, Trieste: 39.Google Scholar
Joly, N. and Leymerie, A. 1848. Memoire sur les Nummulites considerées zoologiquement et geologiquement. Memoires de l'Académie des Sciences, Inscriptions et Belles-Lettres de Toulouse, 3, 4:149218.Google Scholar
Lamarck, J. B. 1801. Systême des animaux sans vertèbres. Chez Deterville, Paris, 432 p.Google Scholar
Langer, M. and Hottinger, L. 2000. Biogeography of selected “larger” foraminifera. Micropaleontology, 46(suppl. 1):5786.Google Scholar
Langer, W. 1961. Über das Alter der Fischschiefer von Hvar-Lesina, Dalmatien. Neues Jahrbuch für Geologie und Paläontologie, 6:329331.Google Scholar
Latreille, P. A. 1802–1803. Histoire Naturelle, Générale et Particulière, des Crustacés et des Insects. Volume 3. F. Dufart, Paris, 468 p.Google Scholar
Lörenthey, E. 1925. Beitrage zur Entwicklung des Eozäns und seiner Fauna in Nordalbanien. Mitteilungen aus dem Jahrbuch der königlischen Ungarischen Geologischen Anstalt, 25(1):320, pls. 1, 2.Google Scholar
MacLeay, W. S. 1838. On the brachyurous decapod Crustacea brought from the Cape by Dr. Smith, p. 5371, 2 pls. In Illustrations of the Annulosa of South Africa; Being a Portion of the Objects of Natural History Chiefly Collected During an Expedition into the Interior of South Africa, Under the Direction of Dr. Andrew Smith, in the Years 1834, 1835, and 1836; Fitted Out by “The Cape of Good Hope Association for Exploring Central Africa.” Smith, Elder & Co., London.Google Scholar
Marjanac, T., Babac, D., Benić, J., Ćosović, V., Drobne, K., Marjanac, Lj., Pavlovec, R., and Velimirović, Z. 1998. Eocene carbonate sediments and sea-level changes on the NE part of Adriatic carbonate platform (Island of Hvar and Pelješac peninsula, Croatia), p. 243254. In Hottinger, L. and Drobne, K. (eds.), Paleogene Sallow Benthos of the Tethys, 2. Opera—Dela SAZU, 34/2.Google Scholar
Milne Edwards, A. 1862. Monographie des Crustacés fossiles de la famille Cancériens. Annales de Science Naturelle, Zoologie, series 4, 18(1862):3185, pls. 1–10.Google Scholar
Pavšič, J. and Premec Fuček, V. 2000. Calcareous nannoplankton and planktonic foraminiferal zones during the Middle and Upper Eocene of the “Transitional beds” of the Adriatic platform. Annali di Museo Civico di Storia Naturali Ferrara, 3:2223.Google Scholar
Puškarić, S. 1987. Calcareous nannoplankton from clastic sediments of the island of Hvar. Radovi Jugoslavenske Akademije Znanosti i Umjetnosti, 22(431):716.Google Scholar
Radovčić, J. 1973. O starosti i nalazima fosilnih riba u kredi jadranskog pojasa. (About the age and the localities of the Cretaceous fishes in the Adriatic Zone). Geoloski Vjesnik, 25(1971):321326.Google Scholar
Radovčić, J. 1975. Some new Upper Cretaceous teleosts from Yugoslavia with special reference to localities, geology and paleoenvironment. Palaeontologia Jugoslavica, 17:155.Google Scholar
Salopek, M. 1927. Eocenska sinklinala na otoku Hvaru (Eocene synclinal on the Island of Hvar). Geografski Vestnik, 3(1–4):95103.Google Scholar
Salopek, M. 1931. Eocenska sinklinala od grada Hvara do Dubovice. (Eocene synclinal from Hvar town to Dubrovice). Radovi Jugoslavenske Akademije Znanosti i Umjetnosti, 241:6980.Google Scholar
Schlumberger, C. 1903. Troisièmer note sur les Orbitoïdes. Bulletin de la Societé Géologique de France, serie 4, 3(Pt. 3):273289.Google Scholar
Schubert, R. 1909. Geologie von dalmatien. Verhandlungen Geologische Reichsanstalt H, 16:1392.Google Scholar
Schweitzer, C. E. 2003. Utility of proxy characters for classification of fossils: An example from the fossil Xanthoidea (Crustacea: Decapoda: Brachyura). Journal of Paleontology, 77:11071128.Google Scholar
Schweitzer, C. E. 2005. The genus Xanthilites Bell, 1858 and a new xanthoid family (Crustacea: Decapoda: Brachyura: Xanthoidea): New hypotheses on the origin of the Xanthoidea MacLeay, 1838. Journal of Paleontology, 79:277295.Google Scholar
Schweitzer, C. E., Ćosović, V., and Feldmann, R. M. 2005. Harpactocarcinus from the Eocene of Istria, Croatia, and the paleoecology of the Zanthopsidae Via, 1959 (Crustacea: Decapoda: Brachyura). Journal of Paleontology, 79:663669.Google Scholar
Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferrandez, C., Jauhri, A. K., Less, G., Pavlovec, R., Pignatti, J., Samso, J. M., Schaub, H., Sirel, E., Strougo, A., Tambareau, Y., Tosquella, J., and Zakrevskaya, E. 1998. Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Societé Geologique de France, 169/2:281299.Google Scholar
Söhle, U. 1900. Vorläufiger Bericht über die stratigraphisch-geologischen Verhältnisse der Insel Lesina. Verhandlungen Geologische Reichsanstalt H, 11/12:319325.Google Scholar
Stubblefield, C. J. 1946. Some decapodan Crustacea from the Middle Eocene of British Somaliland. The Annals and Magazine of Natural History, eleventh series, 13(104):505519, pls. VIII and IX.Google Scholar
Tarlao, A., Tunis, G., and Venturini, S. 2005. Dropstones, pseudoplanktonic forms and deep-water decapod crustaceans within a Lutetian condensed succession of Central Istria (Croatia): Relation to palaeoenvironmental evolution and palaeogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 218:325345.Google Scholar
Toniolo, A. R. 1909. L'Eocene dei dintorni di Rozzo in Istria e la sua fauna. Palaeontographica Italica, XV:237295, pls. XXIV–XXVI.Google Scholar
Toumarkine, M. and Bolli, H. M. 1970. Evolution de Globorotalia cerroazulensis (Cole) dans l'Eocène moyen et supérieur de Possagno (Italie). Revue de Micropaléontologie, 13:131145, 17 figs., 2 pls.Google Scholar
Vía, L. 1959. Decápodos fósiles del Eoceno español. Boletén Instituto Geológico y Minero de España, 70:331402.Google Scholar
Vía, L. 1969. Crustáceos decápodos del Eoceno Español. Pirineos, 91–94:1479.Google Scholar