Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T12:03:52.963Z Has data issue: false hasContentIssue false

Life cycle of Early Cambrian microalgae from the Skiagia-plexus acritarchs

Published online by Cambridge University Press:  14 July 2015

Małgorzata Moczydłowska*
Affiliation:
Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, SE 752 36 Uppsala, Sweden

Abstract

Light microscopy studies on new materials and museum collections of early Cambrian organic-walled microfossils, informally called acritarchs, provide the observations on phenetic features that permit a comparison to certain Modern microalgae and the recognition of various developmental stages in their life cycle. the microfossils derive from various depositional settings in Estonia, Australia, Greenland, Sweden, and Poland. the exceptionally preserved microfossils reveal the internal body within the vesicle, the endocyst, and the process of releasing the endocyst from the cyst. Vegetative cells, cysts, and endocysts are distinguished, and the hypothetical reconstruction of a complex life cycle with the alternation of sexual and asexual generations is proposed. Acritarchs from the Skiagia-plexus are cysts, and likely zygotes in the sexual generation, which periodically rested as “benthic plankton.” Some microfossils of the Leiosphaeridia-plexus that are inferred to be vegetative cells were planktonic and probably haplobiontic. These form-taxa may belong to a single biological species, or a few closely related species, and represent the developmental stages and alternating generations in a complex life cycle that is expressed by polymorphic, sphaero- and acanthomorphic acritarchs. the morphological resemblance and diagnostic cell wall ultrastructure with the trilaminar sheath structure known from earlier studies suggest that the early Cambrian microfossils are the ancestral representatives and/or early lineages to the Modern class Chlorophyceae and the orders Volvocales and Chlorococcales.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allard, B. and Templier, J.. 2000. Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry, 54:369380.CrossRefGoogle ScholarPubMed
Altermann, W. and Schopf, J. W.. 1995. Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and eolutionary implications. Precambrian Research, 75:6590.CrossRefGoogle ScholarPubMed
Arouri, K., Greenwood, P. F., and Walter, M. R.. 1999. A possible chlorophycean affinity of some Neoproterozoic acritarchs. Organic Geochemistry, 30:13231337.CrossRefGoogle Scholar
Arouri, K., Greenwood, P. F., and Walter, M. R.. 2000. Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation. Organic Geochemistry, 31:7589.CrossRefGoogle Scholar
Atkinson, A.W. Jr., Gunning, B. E. S., and John, P. C. C.. 1972. Sporopollenin in the cell wall of Chlorella and other algae: ultrastructure, chemistry and incorporation of 14C acetate, studied in synchronous cultures. Planta, 107:132.CrossRefGoogle Scholar
Baldauf, S. L. 2003. The deep roots of eukaryotes. Science, 300:17031706.CrossRefGoogle ScholarPubMed
Beakes, G. W. 2006. All things bright and beautiful: The Hidden Cosmos of Microscopic Planktonic Algae, p. 687700. In Seckbach, J. (ed.), Life As we Know It. Cellular Origin, Life in Extreme Habitats and Astrobiology v. 10, Springer, Dordrecht.Google Scholar
Biebel, P. 1973. Morphology and life cycles of saccoderm desmids in culture. Beih. Nova Hedwigia, 42:3947.Google Scholar
Bold, H.C. and Wynne, M. J.. 1985. Introduction to the Algae. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 720 p.Google Scholar
Bracket, J. L. A. 1965. Acetabularia. Endeavor, 24:155161.Google Scholar
Brunner, U. and Honegger, R.. 1985. Chemical and ultrastructural studies on the distribution of sporopolleninlike biopolymers in six genera of lichen phycobionts. Canadian Journal of Botany, 63:22212230.CrossRefGoogle Scholar
Butterfield, N. J. 2004. A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology, 30:231252.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N. J., Knoll, A. H., and Swett, K.. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata, 34, 84 p.Google Scholar
Chaloner, W. G. and Orbell, G.. 1971. A palaeobiological definition of sporopollenin, p. 273294. In Brooks, J. J., Grant, P. R., Muir, M. D., Van Gijzel, P.P., and Shaw, G. (eds.), Sporopollenin, Academic Press, London.CrossRefGoogle Scholar
Chapman, R. L. and Waters, D. A.. 2006. The Algae-Diverse Life Forms and Global Importance, p. 3951. In Seckbach, J. (ed.), Life As we Know It. Cellular Origin, Life in Extreme Habitats and Astrobiology v. 10, Springer, Dortrecht.Google Scholar
Coessel, P. F. M. and Texeira, R. M. V.. 1974. Notes on sexual reproduction in desmids. I. Zygospore formation in nature (with special reference to some unusual records of zygotes). Acta Botanica Neerlandica 23:361664.CrossRefGoogle Scholar
Cohen, P., Kodner, R., and Knoll, A. H.. 2007. Extending the taxonomic affinities of Ediacaran and Phanerozoic acritarchs. The Palaeontological Association 51st Annual Meeting, 16–19 December, 2007, Uppsala, Programme with Abstracts, p. 28.Google Scholar
Colbath, G. K. and Grenfell, H. R.. 1995. Review of biological affinities of Paleozoic acid-resistant, organic-walled eukaryotic algal microfossils (including “acritarchs”). Review of Palaeobotany and Palynology, 86:287314.CrossRefGoogle Scholar
Dale, B. 1983. Dinoflagellate resting cysts: “benthic plankton,” p. 69136. In Fryxell, G. A. (ed.), Survival strategies of the algae. Cambridge University Press, Cambridge.Google Scholar
Dale, B. 1996. Dinoflagellate cyst ecology: modelling and geological applications, p. 12491275. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation 1, Publishers Press, Salt Lake City.Google Scholar
Dale, B. 2001. The sedimentary record of dinoflagellate cysts: looking back into the future of phytoplankton blooms. Scientia Marina, 65:257272.CrossRefGoogle Scholar
Damiani, M. C., Leonardi, P. I., Pieroni, O. I., and Cáceres, E. J.. 2006. Ultrastructure of the cyst wall of Haematococcus pluvialis (Chlorophycea): wall development and behaviour during cyst germination. Phycologia, 45:616623.CrossRefGoogle Scholar
Deason, T. R. and O'Kelly, J. C.. 1979. Mitosis and cleavage during zoosporogenesis in several coccoid green algae. Journal of Phycology, 15:371378.Google Scholar
Derenne, S., Largeau, C., Berkalo, C., Rousseau, B., Wilhelm, C. and Hatcher, P.. 1992a. Non-hydrolysable macromolecular constituents from outer walls of Chlorella fusca and Nanochlorum eucaryotum. Phytochemistry, 31:19231929.CrossRefGoogle Scholar
Derenne, S., le Berre, F., Largeau, C., Hatcher, P., Connan, J., and Raynaud, J. F.. 1992b. Formation of ultralaminae in marine kerogens via selective preservation of thin resistant outer walls of microalgae. Organic Geochemistry, 19:345350.CrossRefGoogle Scholar
Derenne, S., Largeau, C., and Berkalo, C.. 1996. First example of an algaenan yielding an aromatic-rich pyrolysate: possible geochemical implications on marine kerogen formation. Organic Geochemistry, 24:617627.CrossRefGoogle Scholar
Downie, C. 1982. Lower Cambrian acritarchs from Scotland, Norway, Greenland and Canada. Transactions of the Royal Society of Edinburgh: Earth Sciences, 72:257295.CrossRefGoogle Scholar
Downie, C., and Sarjeant, W. A. S.. 1963. On the interpretation and status of some hystrichosphere genera. Palaeontology, 6:8396.Google Scholar
Downie, C., Evitt, W. R., and Sarjeant, W. A. S.. 1963. Dinoflagellates, hystrichospheres, and the classification of the acritarchs. Stanford University Publications, Geological Sciences, 7:116.Google Scholar
Eisenack, A. 1958. Tasmanites Newton 1975 und Leiosphaeridia n. gen. aus gattungen der Hystrichosphaeridea. Palaeontographica, A110:119.Google Scholar
Eisenack, A. 1976. Mikrofossilien aus dem Vaginatenkalk von Hälludden, Öland. Palaeontographica, Abt. A, 154:181203.Google Scholar
Evitt, W. R. 1985. Sporopollenin dinoflagellate cysts. Their morphology and interpretations. American Association of Stratigraphic Palynologists Foundation, 333 p.Google Scholar
Falkowski, P. G. and Knoll, A. H.. 2007. Evolution of Primary Produceres in the Sea. Elsevier Academic Press, Amsterdam, 441 p.Google Scholar
Falkowski, P. G. and Raven, J. A.. 2007. Aquatic Photosynthesis. Princeton University Press, Princeton and Oxford, 484 p.CrossRefGoogle Scholar
Fehling, J., Stoecker, D., and Baldauf, S. L.. 2007. Photosynthesis and the eukaryote tree of life, p. 76107. In Falkowski, P. G. and Knoll, A. H. (eds.), Evolution of Primary Producers in the Sea. Elsevier Academic Press, Amsterdam.Google Scholar
Fensome, R. A., MacRae, R. A., Moldowan, J. M., Taylor, F. J. R., and Williams, G. L.. 1996a. The early Mesozoic radiation of dinoflagellates. Paleobiology, 22:329338.CrossRefGoogle Scholar
Fensome, R. A., Riding, J. B., and Taylor, F. J. R.. 1996b. Dinoflagellates, p. 107169. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications, American Association of Stratigraphic Palynologists Foundation 1, Publishers Press, Salt Lake City.Google Scholar
Gelin, F., Boogers, I., Noordeloos, A. A. M., Sinninghe Damste, J. S., Riegman, R., and de Leeuw, J. W.. 1997. Resistant biomacromolecules in microalgae of the classes Eustigmatophyceae and Chlorophyceae: geochemical implications. Organic Geochemistry, 26:659675.CrossRefGoogle Scholar
Gelin, F., Volkman, J. K., Largeau, C., Derenne, S., Sinninghe Damsté, J. S., and de Leeuw, J. W.. 1999. Distribution of aliphatic, nonhydrolyzable biopolymers in marine microalgae. Organic Geochemistry, 30:147159.CrossRefGoogle Scholar
Gradstein, F., Ogg, J., and Smith, A.. 2004. A Geologic Time Scale 2004. Cambridge University Press, Cambridge, 589 p.CrossRefGoogle Scholar
Grey, K. 2005. Ediacaran palynology of Australia. In Hannah, M. and Laurie, J. R. (eds.), Memoir of the Association of Australasian Palaeontologists, 31:1439.Google Scholar
Guilloux, L., Eikrem, W., Chretiennot-Dinet, M-J., le Gall, F., Massana, R., Romari, K., Pedros-Alio, C., and Vaulot, D.. 2004. Diversity of picoplanktonic prasinophytes assessed by direct nuclear SSU rDNA sequencing of environmental samples and novel isolates retrieved from oceanic and coastal marine ecosystems. Protist, Jena, 155–2–193–214.CrossRefGoogle Scholar
Hackett, J. D., Yoon, H. S., Butterfield, N. J., Sanderson, M. J., and Bhattacharya, D.. 2007. Plastid endosymbiosis: sources and timing of the major events, p. 109132. In Falkowski, P. G. and Knoll, A. H. (eds.), Evolution of primary producers in the sea, Elsevier Academic Press, Amsterdam.CrossRefGoogle Scholar
Hagen, C., Siegmund, S., and Braune, W.. 2002 Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. European Journal of Phycology, 37:217226.CrossRefGoogle Scholar
Hansen, J. L. S., Alldredge, A. L., Jackson, G. A., Passow, U., Dam, H. G., Drapeau, D. T., Waite, A., and Garcia, C. M.. 1996. Sedimentation of phytoplankton during a diatom bloom: rates and mechanisms. Journal of Marine Research, 54:11231148.Google Scholar
Harris, G. 1986. Phytoplankton Ecology: Structure, Function and Fluctuation. Chapman and Hall, New York.CrossRefGoogle Scholar
Head, M. J., Lewis, J., and de Vernal, A.. 2006. The cyst of the calcareous dinoflagellate Scrippsiella trifida: resolving the fossil record of its organic wall with that of Alexandrium tamarense. Journal of Paleontology, 80:118.CrossRefGoogle Scholar
Hemsley, A. R. 1994. The origin of the land plant sporophyte: and interpolational scenerio. Biological Review, 69:263273.CrossRefGoogle Scholar
Hérissé, A. le. 1989. Acritarches et kystes d'algues Prasinophycees du Silurien de Gotland, Suede. Palaeontographica Italica, 76:57302.Google Scholar
Hérissé, A. le, Al-Ruwaili, M., Miller, M., and Vecoli, M.. 2007. Environmental changes reflected by palynomorphs in the early Middle Ordovocian Hanadir member of the Qasim Formation, Saudi Arabia. Revue de micropaléontologie, 50:316.CrossRefGoogle Scholar
Hoek, C. van den. 1978. Algen. Einführung in die Phykologie. Tieme, Stuttgart, 481 p.Google Scholar
Hoffman, L. R. 1983. Atractomorpha echinata gen. et sp. nov., a new anisogamous member of the Sphaeropleacea (Chlorophycea). Journal of Phycology, 19:7686.CrossRefGoogle Scholar
Hoops, H. J., Brighton, M. C., Stickless, S. M., and Clement, P. R.. 1999. A test for two possible mechanisms for phototactic steering in Volvox carteri (Chlorophyceae). Journal of Phycology, 35:539547.CrossRefGoogle Scholar
Hoshaw, R. W., and Hilton, R. L. Jr. 1966. Observations on the sexual cycle of the saccoderm desmid Spirotaenia condensata. Journal of Arizona Academy of Sciences, 4:8892.CrossRefGoogle Scholar
Javaux, E. J., Knoll, A. H., and Walter, M. R.. 2004. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology, 2:121132.CrossRefGoogle Scholar
Jux, U. 1969. Über den Feinbau der Zystenwandung von Halosphaera Schmitz, 1878. Palaeontographica, B 128:4855.Google Scholar
Keeling, P. J., Burger, G., Durnford, D. G., Lang, B. F., Lee, R. L., Pearlman, R. E., Roger, A. J., and Gray, M. W.. 2005. The Tree of Eukaryotes. TRENDS in Ecology and Evolution, 20:670676.CrossRefGoogle ScholarPubMed
Kenrich, P. and Crane, P. R.. 1997. The origin and early diversification of land plants: a cladistic study. Smithsonian Institution Press, Washington, D.C., 441 p.Google Scholar
Kies, L., 1975. Elektronmikroskopische Untersuchungen über die Konjugation bei Microasterias papillifera. Beih. Nova Hedwigia, 42:139154.Google Scholar
Kjellström, G. 1968. Remarks on the chemistry and ultrastructure of the cell wall of some Palaeozoic leiospheres. Geologiska föreningens i Stockholm förhandlingar, 90:118221.CrossRefGoogle Scholar
Knoll, A. H., Javaux, J. E., Hewitt, D., and Cohen, P.. 2006. Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society, B 361:10231038.CrossRefGoogle ScholarPubMed
Knoll, A., Summons, R. E., Waldbauer, J. R., and Zumberge, J. E.. 2007. The Geological Succession of Primary Producers in the Ocean, p. 133163. In Falkowski, P. G. and Knoll, A. H. (eds.), Evolution of Primary Producers in the Sea, Academic Press, Elsevier, Amsterdam.CrossRefGoogle Scholar
Kokinos, J. P. and Anderson, D. M.. 1995. Morphological development of resting cysts in cultures of the marine dinoflagellate Lingulodinium polyedrum (= L. machaerophorum). Palynology, 19:143166.CrossRefGoogle Scholar
Kokinos, J. P., Eglinton, T. I., Goni, M. A., Boon, J. J., Martoglio, P. A., and Anderson, D. M.. 1998. Characterization of a highly resistant biomacromolecular material in the cell wall of a marine dinoflagellate resting cyst. Organic Geochemistry, 28:265288.CrossRefGoogle Scholar
Lee, R. E. 2008. Phycology. Cambridge University Press, Cambridge, 547 p.CrossRefGoogle Scholar
Leeuw, J.W. de, Versteegh, G. J. M., and van Bergen, P. F.. 2006. Biomacromolecules of plants and algae and their fossil analogues. Plant Ecology, 189:209233.CrossRefGoogle Scholar
Le Hérissé, A. 1989. Acritarches et kystes d'algues Prasinophycees du Silurien de Gotland, Suede. Palaeontographica Italica, 76:57302.Google Scholar
Le Hérissé, A., Al-Ruwaili, M., Miller, M. and Vecoli, M.. 2007. Environmental changes reflected by palynomorphs in the early Middle Ordovocian Hanadir member of the Qasim Formation, Saudi Arabia. Revue de micropaléontologie, 50:316.CrossRefGoogle Scholar
Lipps, J. H. and McCartney, K.. 1993. Chrysophytes, p. 141154. In Lipps, J. H. (ed.), Fossil Prokaryotes and Protists. Blackwell Scientific Publications, Oxford.Google Scholar
Margulis, L., Corliss, J. O., Melkonian, M., and Chapman, D. J.D.J., (eds.). 1989. Handbook of Protoctista. Jones and Bartlett Publishers, Boston, 914 p.Google Scholar
Marshall, C. P., Javaux, E. J., Knoll, A. H., and Walter, M. R.. 2005. Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: A new approach to Palaeobiology. Precambrian Research, 138:208224.CrossRefGoogle Scholar
Marshall, C. P., Carter, E. A., Leuko, S., and Javaux, E. J., 2006. Vibrational spectroscopy of extant and fossil microbes: Relevance for the astrobiological exploration of Mars. Vibrational Spectroscopy, 41:182189.CrossRefGoogle Scholar
Marshall, C. P., Love, G. D., Snape, C. E., Hill, A. C., Allwood, A. C., Walter, M. R., van Kranendonk, M. J., Bowden, S. A., Sylva, S. P., and Summons, R. E.. 2007. Structural characterization of kerogen in 3.4 Ga Archaean cherts from the Pilbara Craton, Western Australia. Precambrian Research, 155:123.CrossRefGoogle Scholar
Martin, F. 1993. Acritarchs: a review. Biological Review, 68:475538.CrossRefGoogle Scholar
Mattox, K. R. and Stuart, K. D.. 1984. Classification of the green algae: A concept based on comparative cytology, p. 2972. In Irvine, D. E. G. and John, D. M. (eds.), The Systematics of the Green Algae. Academic Press, London-New York.Google Scholar
Melkonian, M. 1989. Chlorophyta, p. 597616. In Margulis, L., Corliss, J. O., Melkonian, M., and Chapman, D. J. (eds.), Handbook of Protoctista. Jones and Bartlett Publishers, Boston.Google Scholar
Mix, M. 1969. Zur Feinstruktur der Zellwände in der Gattung Closterium (Desmidiaceae) under besonderer Berucksichtigung des Porensystems. Archives of Microbiology, 68:306325.Google Scholar
Moczydlowska, M. 1991. Acritarch biostratigraphy of the Lower Cambrian and the Precambrian-Cambrian boundary in southeastern Poland. Fossils and Strata 29, 127 p.Google Scholar
Moczydlowska, M. 1998. Cambrian acritarchs from Upper Silesia, Poland–biochronology and tectonic implications. Fossils and Strata 46, 121 p.Google Scholar
Moczydlowska, M. 2002. Early Cambrian phytoplankton diversification and appearance of trilobites in the Swedish Caledonides with implications for coupled evolutionary events between primary producers and consumers. Lethaia, 35:191214.CrossRefGoogle Scholar
Moczydlowska, M. 2008. The Ediacaran microbiota and the survival of Snowball Earth conditions. Precambrian Research, 167:115.CrossRefGoogle Scholar
Moczydlowska, M., Jensen, S., Ebbestad, J-O., Budd, G., and Martí-Mus, M.. 2001. Biochronology of the autochthonous Lower Cambrian in the Laisvall-Storuman area, Swedish Caledonides. Geological Magazine, 138:435453.CrossRefGoogle Scholar
Moczydlowska, M. and Willman, S.. 2009. Ultrastructure of cell walls in ancient microfossils as a proxy to their biological affinities. Precambrian Research, 173:2738.CrossRefGoogle Scholar
Moczydlowska, M., Schopf, J. W., and Willman, S.. 2009. Micro-and nanoscale ultrastructure of cell walls in Cryogenian microfossils: revealing their biological affinity. Lethaia. DOI 10.1111/j.1502–3931.2009.00175.xCrossRefGoogle Scholar
Moczydlowska, M. and Zang, W-L.. 2006. The Early Cambrian acritarch Skiagia and its significance for global correlation. Palaeoworld, 15:328347.CrossRefGoogle Scholar
Moldowan, J. M. and Talyzina, N. M.. 1998. Biogeochemical evidence for dinoflagellates ancestors in the early Cambrian. Science, 281:11681170.CrossRefGoogle ScholarPubMed
Moldowan, J. M., Jacobson, S. R., Dahl, J., Al-Hajji, J.A., Huizinga, B. J., and Fago, F. J.. 2001. Molecular fossils demonstrate Precambrian origin of Dinoflagellates, p. 474493. In Zhuravlev, A. Y. and Riding, R. (eds.), The Ecology of the Cambrian Radiation, Columbia University Press, New York.Google Scholar
O'Kelly, C. J. 2007. The Origin and Early Evolution of Green Plants, p. 287309. In Falkowski, P. G. and Knoll, A. H. (eds.), Evolution of Primary Producers in The Sea. Academic Press, Elsevier, Amsterdam.CrossRefGoogle Scholar
Pahlow, M., Riebesell, U., and Wolf-Gladrow, D. A.. 1997. Impact of cell shape and chain formation on nutrientsacquisition by marine diatoms. Limnology and Oceanography, 42:16601672.CrossRefGoogle Scholar
Palacios, T. and Moczydlowska, M.. 1998. Acritarch biostratigraphy of the Lower-Middle Cambrian boundary in the Iberian Chains, Province of Soria, northeastern Spain. Revista Española de Paleontologia, n° extr. Homenaje al Prof. Gonzalo Vidal, 6582.Google Scholar
Paris, F. and Növlak, J.. 1999. Biological interpretation and paleobio-diversity of a cryptic fossil group: the “chitinozoan animal.” Geobios, 32:315324.CrossRefGoogle Scholar
Pickett-Heaps, J. D. 1972. Cell division in Cosmarium botrytis. Journal of Phycology, 8:343360.CrossRefGoogle Scholar
Pickett-Heaps, J. D. 1975. Green Algae: Structure, Reproduction and Evolution in Selected Genera. Sinauer Associates, Suderland, Ma, 606 p.Google Scholar
Raven, P. H., Evert, R. F., and Eichhorn, W. H.. 2005. Biology of Plants. W. H. Freeman, San Francisco.Google Scholar
Starr, R. C. 1958. The production and inheritance of the triradiate form in Cosmarium turpinii. American Journal of Botany, 45:243248.CrossRefGoogle Scholar
Starr, R. C. 1963. Homothallism in Golenkinia minutissima. In Studies in Microalgae and Bacteria, Japanese Society of Plant Physiology, University of Tokyo Press, Tokyo, 36.Google Scholar
Strother, P. K. 1996. Chapter 5. Acritarchs, p. 81107. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications, American Association of Stratigraphic Palynologists Foundation 1, Publishers Press, Salt Lake City.Google Scholar
Summons, R. E. and Walter, M. R.. 1990. Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. American Journal of Science, 290-A:212244.Google Scholar
Tassigny, M. 1971. La sexualité des Desmidiées. Année Biol., 10:403429.Google Scholar
Talyzina, N. M. and Moczydlowska, M.. 2000. Morphological and ultrastructural studies of some acritarchs from the Lower Cambrian Lükati Formation, Estonia. Review of Palaeobotany and Palynology, 112:121.CrossRefGoogle ScholarPubMed
Tappan, H. 1980. The paleobiology of plant protists. WH Freeman, San Francisco, California, 1028 p.Google Scholar
Taylor, F. J. R. 1989. Phylum Dinoflagellata, p. 419437. In Margulis, L., Corliss, J. O., Melkonian, M. and Chapman, D. J. (eds.), Handbook of Protoctista. Jones and Bartlett Publishers, Boston.Google Scholar
Taylor, W. A. and Strother, P. K.. 2008. Ultrastructure of some Cambrian palynomorphs from the Bright Angel Shale, Arizona, USA. Review of Palaeobotany and Palynology, 151:4150.CrossRefGoogle Scholar
Traverse, A. 2007. Paleopalynology. Springer, Dordrecht, 813 p. Second Edition.CrossRefGoogle Scholar
Turmel, M., Brouard, J-S., Gagnon, C., Otis, C., and Lemieux, C.. 2008. Deep division in the Chlorophyceae (Chlorophyta) revealed by chloroplast phylogenetic analyses. Journal of Phycology, 44:739750.CrossRefGoogle Scholar
Vanguestaine, M., Brück, P. M., Maziane-Serraj, N., and Higgs, K. T.. 2002. Cambrian palynology of the Bray Group in County Wicklow and South County Dublin, Ireland. Review of Palaeobotany and Palynology, 120:5372.CrossRefGoogle Scholar
Versteegh, G. J. M. and Blokker, P.. 2004. Resistant macromolecules of extant and fossil microalgae. Phycological Research, 52:325339.CrossRefGoogle Scholar
Vidal, G. and Ford, T.. 1985. Microbiotas from the late Proterozoic Chuar Group (northern Arizona) and Uinta Mountain Group (Utah) and their chronostratigraphic implications. Precambrian Research, 28:349489.CrossRefGoogle Scholar
Vidal, G. and Peel, J. S.. 1993. Acritarchs from the Lower Cambrian Buen Formation in North Greenland. Gr⊘nlands Geologiske Unders⊘gelse Bulletin 164, 35 p.Google Scholar
Volkova, N. A. 1969. Acritarchs of the north-western Russian platform, p. 224236. In Rozanov, A. Y. (ed.), Tommotian Stage and the Cambrian lower boundary problem. Nauka, Moscow. (In Russian)Volkova, N. A., Kiryanov, V. V., Piscun, L. V., Pashkyavichene, L. T., and Jankauskas, T. V.. 1979. Microflora, p. 4–38. In Keller, B. M. and Rozanov, A. Y. (eds.), Upper Precambrian and Cambrian palaeontology of the East-European Platform. Nauka, Moscow. (In Russian)Google Scholar
Waveren, I. van. 1993. Planktonic organic matter in surficial sediments of the Banda Sea (Indonesia) - a palynological approach. Geologica Utraiectica, 104, 237 p.Google Scholar
Waveren, I. M. van and Marcus, N. H.. 1993. Morphology of copepod egg envelopes from Turkey Point (Gulf of Mexico). Special Papers in Palaeontology, 48:111124.Google Scholar
Wellman, C. H. 2003. Dating the origin of land plants, p. 119141. In Donoghue, P. C. J. and Smith, M. P. (eds.), Telling the evolutionary time: Molecular clocks and the fossil record. CRC Press, London.Google Scholar
Wicander, R. 2007. Acritarchs and Prasinophyte Phycomata. Short Course. CIMP Lisbon'07, Joint Meeting of Spore/Pollen and Acritarc Subcommissions, INETI, Lisbon, Portugal, 24–28 September 2007,15 p.Google Scholar
Willman, S. 2009. Morphology and wall ultrastructure of leiosphaeric and acanthomorphic acritarchs from the Ediacaran of Australia. Geobiology, 7:820.CrossRefGoogle ScholarPubMed
Willman, S. and Moczydlowska, M.. 2007. Wall ultrastructure of an Ediacaran acritarch from the Officer Basin, Australia. Lethaia, 40:111123.CrossRefGoogle Scholar
Winter, P. A. and Biebel, P.. 1967. Conjugation in a heterothallic Staurastrum. Proceedings of the Pennsylvania Academy of Sciences, 40:7679.Google Scholar
Zang, W. 2001. Acritarchs, p. 7485. In Alexander, E. M., Jago, J. B., Rozanov, A. Y., and Zhuravlev, A.Y. (eds.), The Cambrian biostratigraphy of the Stansbury Basin, South Australia. IAPC Nauka, Moscow.Google Scholar
Zang, W., Jago, J. B., Alexander, E. M., and Paraschivoiu, E.. 2004. A review of basin evolution, sequence analysis and petroleum potential of the frontier Arrowie Basin, South Australia, p. 243256. In Boult, P. J., Johns, D. R., and Lang, S. C. (eds.), Eastern Australian Basins Symposium II, Petroleum Exploration Society of Australia, Special Publication.Google Scholar
Zang, W-L., Moczydlowska, M., and Jago, J. B.. 2007. Early Cambrian acritarch assemblage zones in South Australia and global correlation. In Laurie, J. R., Paterson, J. R. and Jago, J. B. (eds.), Memoirs of the Association of Australasian Palaeontologists, 33:141177.Google Scholar