Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T12:03:05.627Z Has data issue: false hasContentIssue false

Flysch trace fossils from the Cretaceous Kodiak Formation of Alaska

Published online by Cambridge University Press:  02 September 2016

Tommy Mccann
Affiliation:
Department of Geology, University of Leicester, Leicester LE1 7RH, England
Ron K. Pickerill
Affiliation:
Department of Geology, University of New Brunswick, Fredericton, N.B. E3B 5A3, Canada

Abstract

The Cretaceous Kodiak Formation at the northeastern end of Kodiak Island, Alaska, is interpreted to have been deposited in a distal deep-sea fan complex. Facies analysis of the sequence suggests deposition in channels (both major and distributary), lobe fringe (proximal and distal), and interchannel and interchannel/channel mouth environments. The strata contain a diverse and relatively abundant trace fossil assemblage consisting, at the ichnogeneric level, of twenty-six forms: Acanthorhaphe, Chondrites, Circulichnis, Cochlichnus, Cosmorhaphe, Desmograpton, Glockerichnus, Gordia, Helminthoida, Helminthopsis, Muensteria, Neonereites, Nereites, Paleodictyon, Palaeophycus, ?Phycosiphon, Planolites, Protopaleodictyon, Scolicia, Spirophycus, Spirorhaphe, Taenidium, Taphrhelminthopsis, Terebellina, Thalassinoides, and Yakutatia.

Thirty-eight ichnospecies are described, three of which (Acanthorhaphe ichnosp., Cosmorhaphe helicoidea, and Desmograpton fuchsi) are recorded for the first time in North America. Final channel-fill (levee) and interchannel environments contain the most abundant and diverse ichnoassemblages, a reflection of favorable environmental parameters for inhabitation by benthic organisms, but more importantly the presence of diverse lithotypes conducive to the final preservation of their activity. Channel-fill sequences are devoid of trace fossils, a reflection of substrate mobility and lack of shale interbeds precluding toponomic preservation. Lobe fringe sequences contain only isolated trace fossils, a reflection of their poor exposure and largely monolithologic character.

The ichnoassemblage is compared to 20 previously described and taxonomically well-documented deep-water flysch trace fossil studies from the Phanerozoic. Comparison at the ichnogeneric level is favorable with only Acanthorhaphe, Terebellina, and Yakutatia being relatively unique to the Kodiak sequence.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceñplaza, F. G. 1978. El paleozico inferior de Argentina segun sus trazas fosiles. Ameghiana, 15:1564.Google Scholar
Alessandro, A. D'. 1980. Prime osservazioni sulla ichnofauna miocenica della “Formazione di Gorglione” (Castelmezzano, Potenza). Rivista Italiana di Paleontologia e Stratigrafia, 86:357398.Google Scholar
Andrews, H. N. Jr. 1955. Index of generic names of fossil plants. U.S. Geological Survey Bulletin 1013, 262 p.Google Scholar
Archer, A. W., and Maples, C. G. 1984. Trace fossil distribution across a marine-to-nonmarine gradient in the Pennsylvanian of southwestern Indiana. Journal of Paleontology, 58:448466.Google Scholar
Azpeitia-Moros, F. 1933. Datos para el estudio paleontólogico del Flysch de la Costa Cantábrica y de algunos otras puntos de España. Instituto Geologico y Minero de Espana, Boletín 53:165.Google Scholar
Ballance, P. F., Gregory, M. R., Gibson, G. W., Chaproniere, G. C. H., Kadar, A. P., and Sameshima, T. 1984. A late Miocene and early Pliocene upper shelf-to-slope sequence of calcareous fine sediment from the Pacific margin of New Zealand, p. 331342. In Stow, D. A. V. and Piper, D. J. W. (eds.), Fine Grained Sediments: Deep Water Processes and Facies. Geological Society Special Publication 15.Google Scholar
Begg, J. G., Cave, M. P., and Campbell, J. D. 1983. Terebellina mackayi Bather in Oretian Murihiku rocks, Wairaki Hills, Southland. New Zealand Journal of Geology and Geophysics, 26:121122.CrossRefGoogle Scholar
Benton, M. J. 1982. Trace fossils from lower Palaeozoic ocean-floor sediments of the Southern Uplands of Scotland. Transactions of the Royal Society of Edinburgh, 73:6787.Google Scholar
Billings, E. 1862. New species of fossils from different parts of the Lower, Middle and Upper Silurian rocks of Canada, p. 96168. In Palaeozoic Fossils, Vol. I (1861–1865). Geological Survey of Canada, 426.Google Scholar
Bottjer, D. J. 1981. Trace fossils from an Upper Cretaceous deep-sea fan, Simi Hills, California, p. 5962. In Link, M. H., Squires, R. L., and Colburn, I. P. (eds.), Simi Hills Cretaceous Turbidites, Southern California. Pacific Section, Society of Economic Paleontologists and Mineralogists, Fall Fieldtrip Guidebook.Google Scholar
Bottjer, D. J., (ed.). 1987. New Concepts in the Use of Biogenic Sedimentary Structures for Paleoenvironmental Interpretation. Pacific Section, Society of Economic Paleontologists and Mineralogists, Volume and Guidebook, Book 52, 65 p.Google Scholar
Boucot, A. J. 1981. Principles of Benthic Marine Paleoecology. Academic Press, New York, 463 p.Google Scholar
Bouma, A. H. 1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, 168 p.Google Scholar
Bouma, A. H., Normark, W. R., and Barnes, N. E., (eds.). 1985. Submarine Fans and Related Turbidite Systems. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 351 p.Google Scholar
Bourne, D., and Heezen, B. C. 1965. A wandering enteropneust from the abyssal Pacific, and the distribution of ‘spiral’ tracks on the sea-floor. Science, 150:6063.Google Scholar
Campbell, J. K., and Campbell, J. D. 1970. Triassic tube fossils from Tuapeka rocks, Akatore, South Ontaigo. New Zealand Journal of Geology and Geophysics, 13:392399.CrossRefGoogle Scholar
Chamberlain, C. K. 1971. Morphology and ethology of trace fossils from the Ouachita Mountains, southeast Oklahoma. Journal of Paleontology, 45:212246.Google Scholar
Chamberlain, C. K. 1977. Ordovician and Devonian trace fossils from Nevada. Nevada Bureau of Mines and Geology, Bulletin 90:124.Google Scholar
Chamberlain, C. K. 1978. Recognition of trace fossils in cores, p. 133183. In Basan, P. B. (ed.), Trace Fossil Concepts. Society of Economic Paleontologists and Mineralogists, Short Course 5.Google Scholar
Chaplin, J. R. 1980. Stratigraphy, trace fossil associations and depositional environments in the Borden Formation (Mississippian), northeastern Kentucky. Kentucky Geological Society, Annual Fall Fieldtrip Guidebook, Kentucky Geological Survey, Lexington, Kentucky, 114 p.Google Scholar
Crimes, T. P. 1970. Trilobite tracks and other trace fossils from the Upper Cambrian of North Wales. Geological Journal, 7:4768.CrossRefGoogle Scholar
Crimes, T. P. 1973. From limestones to distal turbidites: a facies and trace fossil analysis in the Zumaya flysch (Paleocene–Eocene), North Spain. Sedimentology, 20:105131.Google Scholar
Crimes, T. P. 1977. Trace fossils of an Eocene deep-sea fan, northern Spain, p. 7190. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils 2. Geological Journal Special Issue 9.Google Scholar
Crimes, T. P., and Anderson, M. M. 1985. Trace fossils from late Precambrian–Early Cambrian of southeastern Newfoundland (Canada): temporal and environmental implications. Journal of Paleontology, 59:310343.Google Scholar
Crimes, T. P., and Germs, G. J. B. 1982. Trace fossils from the Nama Group (Precambrian–Cambrian) of southwest Africa (Namibia). Journal of Paleontology, 56:890907.Google Scholar
Crimes, T. P., and Harper, J. C., (eds.). 1970. Trace Fossils. Geological Journal Special Issue 3, Seel House Press, Liverpool, 547 p.Google Scholar
Crimes, T. P., and Harper, J. C., (eds.). 1977. Trace Fossils 2. Geological Journal Special Issue 9, Seel House Press, Liverpool, 351 p.Google Scholar
Crimes, T. P., Legg, I., Marcos, A., and Arboleya, M. 1977. ?Late Precambrian–low Lower Cambrian trace fossils from Spain, p. 91138. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils 2. Geological Journal Special Issue 9.Google Scholar
Crimes, T. P., Goldring, R., Homewood, P., Van Stuijvenberg, J., and Winkler, W. 1981. Trace fossil assemblages of deep-sea fan deposits, Gurnigel and Schlieren flysch (Cretaceous–Eocene), Switzerland. Eclogae Geologicae Helvetiae, 74:953995.Google Scholar
Delgado, J. F. N. 1910. Terrains paléozoiques du Portugal. Étude sur les fossiles des schistes à néréites de San Domingos et des schistes à néréites et a graptolites de Barrancos. Commission du Service Geologique du Portugal, 56, 68 p.Google Scholar
Ehrenberg, K. 1944. Erganzende Bemerkungen zu den seinerzeit aus dem Miozan von Burgschleinitz beschriebenen Gangkernen und Bauten dekapoder Krebse. Paläontologische Zeitschrift, 23:354359.Google Scholar
Ekdale, A. A. 1979. Trace fossil evidence for deep-water sedimentation in Cretaceous arc-trench gap, south-central Alaska. American Association of Petroleum Geologists, Annual Meeting, Abstracts with Programs, p. 79.Google Scholar
Ekdale, A. A. 1980. Graphoglyptid burrows in modern deep-sea sediment. Science, 207:304306.Google Scholar
Ekdale, A. A., and Berger, W. H. 1978. Deep sea ichnofacies: modern organism traces on and in pelagic carbonates of the western equatorial Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 23:263278.CrossRefGoogle Scholar
Ekdale, A. A., Bromley, R. G., and Pemberton, S. G. 1984. Ichnology: the use of trace fossils in sedimentology and stratigraphy. Society of Economic Paleontologists and Mineralogists, Short Course 15, 317 p.Google Scholar
Emmons, E. 1844. The Taconic System: Based on Observations in New York, Massachusetts, Maine, Vermont, and Rhode Island. Caroll and Cook, Albany, 68 p.Google Scholar
Fedonkin, M. A. 1977. Precambrian–Cambrian ichnocoenocoes of the East European Platform, p. 183194. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils 2. Geological Journal Special Issue 9.Google Scholar
Fillion, D., and Pickerill, R. K. 1984. Systematic ichnology of the Middle Ordovician Trenton Group, St. Lawrence Lowland, eastern Canada. Maritime Sediments and Atlantic Geology, 20:141.Google Scholar
Fillion, D., and Pickerill, R. K. 1988. Ichnology of the Lower Ordovician Bell Island and Wabana Groups of eastern Newfoundland. Palaeontographica Canadiana, in press.Google Scholar
Fischer, P., and Paulus, B. 1969. Spurenfossilien aus den oberen Nohn-Schiften der Blanckenheimer Mulde (Einfelium, Eifel). Senckenbergiana Lethaea, 50:81101.Google Scholar
Fischer-Ooster, C. Von. 1858. Die fossilen Fucoiden der Schweizer Alpen, nebst Erorterungen uber deren geologisches Alter. Huber, Bern, 72 p.Google Scholar
Frey, R. W., and Howard, J. D. 1985. Trace fossils from the Panther Member, Star Point Formation (Upper Cretaceous), Coal Creek Canyon, Utah. Journal of Paleontology, 59:370404.Google Scholar
Frey, R. W., and Seilacher, A. 1980. Uniformity in marine invertebrate ichnology. Lethaia, 23:183207.Google Scholar
Frey, R. W., Pemberton, S. G., and Fagerstrom, J. A. 1984. Morphological, ethological and environmental significance of the ichnogenera Scoyenia and Ancorichnus . Journal of Paleontology, 58:511528.Google Scholar
Fuchs, T. 1895. Studien uber Fucoiden und Hieroglyphen. Akademie der Wissenschaften zu Wien, mathematisch-naturwissenschaftliche Klasse, Denkschriften, 62:369448.Google Scholar
Fürsich, F. T. 1974. Corallian (Upper Jurassic) trace fossils from England and Normandy. Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Palaontologie), 13:152.Google Scholar
Gregory, M. R. 1969. Trace fossils from the turbidite facies of the Waitemata Group, Whangaporaoa Peninsula, Auckland. Transactions of the Royal Society of New Zealand, Earth Sciences, 7:120.Google Scholar
Gomez de Llarena, J. 1946. Revision de algunos datos paleontologicos del Flysch Cretaceo y Numulitico de Guipuzcoa. Instituto Géologico y Minero de España, Notas y Communicaciónes, 15:113145.Google Scholar
Hakes, W. G. 1976. Trace fossils and depositional environment of four clastic units, Upper Pennsylvanian megacyclothems, northeast Kansas. The University of Kansas Paleontological Contributions, 63, 46 p.Google Scholar
Hall, J. 1847. Paleontology of New York. Vol. 1. C. Van Benthuysen, Albany, 338 p.Google Scholar
Hall, J. 1852. Paleontology of New York. Vol. 2. C. Van Benthuysen, Albany, 362 p.Google Scholar
Häntzschel, W. 1962. Trace fossils and problematica, p. W177W245. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. W. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Häntzschel, W. 1975. Trace fossils and problematica, p. W1W269. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology, Pt. W, Miscellanea, Supplement 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Hayward, B. W. 1976. Lower Miocene bathyal and submarine canyon ichnocoenoses from Northland, New Zealand. Lethaia, 9:149162.Google Scholar
Heer, O. 1865. Die Urwelt der Schweiz. F. Schulthess, Zurich, 622 p.Google Scholar
Heer, O. 1877. Flora Fossilis Helvetiae. Die vorweltliche Flora der Schweitz. J. Würster and Company, Zurich, 182 p.Google Scholar
Hicks, D. M. 1981. Deep-sea fan sediments in the Torlesse zone, Lake Ohau, South Canterbury, New Zealand. New Zealand Journal of Geology and Geophysics, 24:209230.Google Scholar
Hitchcock, E. 1858. Ichnology of New England. A Report on the Sandstone of the Connecticut Valley, Especially Its Footprints. W. White, Boston, 220 p.Google Scholar
Howell, B. F. 1962. Worms, p. W144W177. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. W. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Jones, D. L., and Clark, S. H. B. 1973. Upper Cretaceous (Maestrichtian) fossils from the Kenai-Chugach Mountains, Kodiak, and Shumagin Island, southern Alaska. U.S. Geological Survey Journal of Research, 1:125136.Google Scholar
Kern, J. P. 1978. Trails from the Vienna Woods: paleoenvironments and trace fossils of Cretaceous to Eocene flysch, Vienna, Austria. Palaeogeography, Palaeoclimatology, Palaeoecology, 23:231262.Google Scholar
Kern, J. P. and Warme, J. E. 1974. Trace fossils and bathymetry of the Upper Cretaceous Point Loma Formation, San Diego, California. Geological Society of America Bulletin, 85:893900.Google Scholar
Kitchell, J. A., and Clark, D. L. 1979. A multivariate approach to biofacies analysis of deep-sea traces from the central Arctic. Journal of Paleontology, 53:10451067.Google Scholar
Ksiazkiewicz, M. 1968. O niektórysch problematykach z flizsu Karpat Polskich (Czesc). Polskiego Towerzystwa Geologicznego w Krakówie, 38:317.Google Scholar
Ksiazkiewicz, M. 1970. Observations on the ichnofauna of the Polish Carpathians, p. 283322. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils. Geological Journal Special Issue 9.Google Scholar
Ksiazkiewicz, M. 1977. Trace fossils in the flysch of the Polish Carpathians. Palaeontologica Polonica, 36, 208 p.Google Scholar
Ludwig, R. 1869. Fossile Pflanzenreste aus den palaolithischen Formationen der Umgebung von Dillenburg, Biedenkopf und Friedberg und aus dem Saalfeldischen. Palaeontographica, 17:105128.Google Scholar
Macsotay, O. 1967. Huellas problematicas y su valor paleoecologico en Venezuela. Geos, 16:779.Google Scholar
Maillard, G. 1887. Considérations sur les fossiles décrits comme Algues. Société Paléontologique de la Suisse, Mémoires 14, 40 p.Google Scholar
Marintsch, E. J., and Finks, R. M. 1982. Lower Devonian ichnofacies at Highland Mills, New York, and their gradual replacement across environmental gradients. Journal of Paleontology, 56:10501078.Google Scholar
McCann, T., and Pickerill, R. K. 1986. The trace fossil Yakutatia emersoni from the Cretaceous Kodiak Formation of Alaska. Canadian Journal of Earth Sciences, 23:262269.Google Scholar
Miller, W. 1986. Discovery of trace fossils in Fransiscan turbidites. Geology, 14:343345.Google Scholar
Miller, S. A., and Dyer, C. B. 1878. Contributions to paleontology, Number 2. Cincinnati, 11 p. (private publication).Google Scholar
Moore, G. W. 1967. Preliminary geological map of Kodiak Island and vicinity, Alaska. U.S. Geological Survey Open-File Report, Scale 1:250,000.Google Scholar
Moore, G. W. 1969. New formations on Kodiak and adjacent islands, Alaska. U.S. Geological Survey Bulletin, 1274-A:2735.Google Scholar
Moore, J. C. 1973. Cretaceous continental margin sedimentation, southwestern Alaska. Geological Society of America Bulletin, 84:595614.2.0.CO;2>CrossRefGoogle Scholar
Murchison, R. I. 1839. The Silurian System. Pt. II. Organic Remains. John Murray, London, p. 579768.Google Scholar
Murchison, R. I. 1850. Memoria sulla struttura geologica delle Alpi, delle Apennini e dei Carpazi. Stamperia granucale, Firenze, 528 p.Google Scholar
Mutti, E. 1977. Distinctive thin-bedded turbidite facies and related depositional environments in the Eocene Hecho Group (south-central Pyranees, Spain). Sedimentology, 24:107131.Google Scholar
Nicholson, H. A. 1873. Contributions to the study of errant annelides of the older Palaeozoic rocks. Proceedings of the Royal Society of London, 21:288290 (also Geological Magazine, 10:309–310).Google Scholar
Nilsen, T. H., and Abbott, P. L. 1981. Paleogeography and sedimentology of Upper Cretaceous turbidites, San Diego, California. American Association of Petroleum Geologists Bulletin, 65:12561283.Google Scholar
Nilsen, T. H., and Bouma, A. H. 1977. Turbidite sedimentology and depositional framework of the Upper Cretaceous Kodiak Formation and related stratigraphic units, southern Alaska. Geological Society of America, Abstracts with Programs, 9:1115.Google Scholar
Nilsen, T. H., and Moore, G. W. 1979. Reconnaissance study of Upper Cretaceous to Miocene stratigraphic units and sedimentary facies, Kodiak and adjacent islands, Alaska. U.S. Geological Survey Professional Paper 1093, 34 p.Google Scholar
Osgood, R. G. Jr. 1970. Trace fossils of the Cincinnati area. Paleontographica Americana, 6:281444.Google Scholar
Paczesna, J. 1985. Ichnorodzaj Paleodictyon Meneghini z dolnego kambru Zbilutki (Góry Swietokrzyskie). Kwartalnitk Geologiczny, 29:589596.Google Scholar
Papp, A. 1941. Quergegliederte Röhren aus dem Oberkreide-Flysch der Alpen. Palaeobiologica, 7:314317.Google Scholar
Pemberton, S. G., and Frey, R. W. 1982. Trace fossil nomenclature and the Planolites–Palaeophycus dilemma. Journal of Paleontology, 56:843881.Google Scholar
Peruzzi, D. G. 1881. Osservazioni sui generi Paleodictyon e Paleomeandron dei terreni cretacei ed eocenici dell' Appennino settentrionale e centrale. Società Toscana di Scienze Naturale, Atti, Memorie, 5:18.Google Scholar
Pickerill, R. K. 1980. Phanerozoic flysch trace fossil diversity—observations based on an Ordovician flysch ichnofauna from the Aroostook–Matapedia Carbonate Belt of northern New Brunswick. Canadian Journal of Earth Sciences, 17:12591270.Google Scholar
Pickerill, R. K. 1981. Trace fossils in a lower Palaeozoic submarine canyon sequence—the Siegas Formation of northwestern New Brunswick, Canada. Maritime Sediments and Atlantic Geology, 17:3758.Google Scholar
Pickerill, R. K. 1982. Glockerichnus, a new name for the trace fossil ichnogenus Glockeria Ksiazkiewicz, 1968. Journal of Paleontology, 56:816.Google Scholar
Pickerill, R. K. 1985. The trace fossil Yakutatia emersoni from the Matapedia Basin of northwest New Brunswick and southeast Gaspe—its first reported occurrence outside of Alaska. Maritime Sediments and Atlantic Geology, 21:4754.Google Scholar
Pickerill, R. K., and Keppie, J. D. 1981. Observations on the ichnology of the Meguma Group (?Cambro–Ordovician) of Nova Scotia. Maritime Sediments and Atlantic Geology, 17:130138.Google Scholar
Pickerill, R. K., Fillion, D., and Harland, T. L. 1984. Middle Ordovician trace fossils in carbonates of the Trenton Group between Montreal and Quebec City, St. Lawrence Lowland, eastern Canada. Journal of Paleontology, 58:416439.Google Scholar
Pickerill, R. K., Hurst, J. M., and Surlyk, F. 1982. Notes on lower Palaeozoic flysch trace fossils from Hall Land and Peary Land, North Greenland, p 25–29. In Peel, J. S. (ed.), Palaeontology of Greenland: Short Contributions. Grønland Geologiske Undersøgelse, Report 108.Google Scholar
Pickering, K. T. 1981. The Kongsfjord Formation—a late Precambrian submarine fan in north-east Finnmark, North Norway. Norges Geologiske Undersokelse, 367:77104.Google Scholar
Pickering, K. T., Stow, D., Watson, M., and Hiscott, R. 1986. Deep-water facies, processes and models: a review and classification scheme for modern and ancient sediments. Earth-Science Reviews, 23:75174.Google Scholar
Quatrefages, M. A. de. 1849. Note sur la Scolicia prisca (A.De.Q.), annélide fossile de la craie. Annales des Sciences Naturelles, Zoologie, 12:265266.Google Scholar
Ratcliffe, B. C., and Fagerstrom, J. A. 1980. Invertebrate lebensspuren of Holocene floodplains: their morphology, origin and paleoecological significance. Journal of Paleontology, 54:614630.Google Scholar
Richter, R. 1937. Marken und Spuren aus alien Zeiten. I—II. Senckenbergiana, 9:150169.Google Scholar
Roniewicz, P., and Pienkowski, G. 1977. Trace fossils of the Podhale Flysch Basin, p. 273288. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils 2. Geological Journal Special Issue 9.Google Scholar
Sacco, F. 1886. Intorno ad alcune impronte organiche dei terreni terziari del Piemonte. Accademia delle Scienze di Torino, Atti, 21:927949.Google Scholar
Sacco, F. 1888. Note di Paleoichologie Italiana. Societá Italiana di Scienze Naturali, Atti, 31:151192.Google Scholar
Sarjeant, W. A. S. 1979. Code for trace fossil nomenclature. Palaeogeography, Palaeoclimatology, Palaeoecology, 28:143167 (inadvertently attached to P. B. Basan).Google Scholar
Schafhäutl, K. E. 1851. Geognostiche Untersuchungen des Südbayerischen Alpengebirges. Literarisch-artistische Anstalt (München), 208 p.Google Scholar
Seilacher, A. 1959. Zur ökologischen Charakteristik von Flysch und Molasse. Eclogae Geologicae Helvetiae, 51:10621078.Google Scholar
Seilacher, A. 1960. Lebensspuren als Leittfossilien. Geologische Rundschau, 49:4150.Google Scholar
Seilacher, A. 1964. Sedimentological classification and nomenclature of trace fossils. Sedimentology, 3:253256.Google Scholar
Seilacher, A. 1967. Bathymetry of trace fossils. Marine Geology, 5:189200.Google Scholar
Seilacher, A. 1977. Pattern analysis of Paleodictyon and related trace fossils, p. 289334. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils 2. Geological Journal Special Issue 9.Google Scholar
Shepard, F. P., Marshall, N. F., McLoughlin, P. A., and Sullivan, C. G. 1979. Currents in Submarine Canyons and other Seavalleys. American Association of Petroleum Geologists, Studies in Geology, 8, 173 p.Google Scholar
Sheehan, P. M., and Schiefelbein, D. R. J. 1984. The trace fossil Thalassinoides from the Upper Ordovician of the eastern Great Basin—deep burrowing in the early Paleozoic. Journal of Paleontology, 58:440447.Google Scholar
Simpson, S. 1975. Classification of trace fossils, p. 3954. In Frey, R. W. (ed.), The Study of Trace Fossils. Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
Smith, A., and Crimes, T. P. 1983. Trace fossils formed by heart urchins—a study of Scolicia and related traces. Lethaia, 16:7992.Google Scholar
Squinabol, S. 1887. Contribuzione alle flora fossile dei terreni terziarii della Linguria I. Fucoidi ed Elmintoidea. Societá Geológica Italiana Bulletino, 6:545561.Google Scholar
Stefani, C. de. 1879. La Montagnola Senese, studio geologico. VI. Delle Eufotidi e delle altre rocce appartenenti all' Eoceno superiore. Comitato Geologico d'Italia Bollettino, 10:431460.Google Scholar
Stefani, C. de. 1895. Aperçu géologique et description paléontologique de l'Ile de Karpathos, p. 128. In de Stefani, C., Forsyth, C. J., and Barbery, W., Karpathos, étude géologique, paléontologique et botanique. Bridel, Lausanne.Google Scholar
Sternberg, K. M. Graf von. 1833. Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt, 5 and 6. Fleischer, Leipzig, Prague, 80 p.Google Scholar
Stow, D. A. V. 1985. Deep-sea clastics: where are we and where are we going, p. 6793. In Brenchley, P. J. and Williams, B. P. J. (eds.), Sedimentology: Recent Developments and Applied Aspects. Geological Society Special Publication 18.Google Scholar
Stow, D. A. V. and Piper, D. J. W. 1984. Deep-water fine-grained sediments: facies models, p. 611646. In Stow, D. A. V. and Piper, D. J. W. (eds.), Fine-Grained Sediments: Deep-Water Processes and Facies. Geological Society Special Publication 15.Google Scholar
Swinbanks, D. D., and Murray, J. W. 1981. Biosedimentological zonation of Boundary Bay tidal flats, Fraser River Delta, British Columbia. Sedimentology, 28:201237.Google Scholar
Swinbanks, D. D., and Shirayama, Y. 1984. Burrow stratigraphy in relation to manganese diagenesis in modern deep-sea carbonates. Deep-Sea Research, 31:11971223.Google Scholar
Tanaka, K. 1971. Trace fossils from the Cretaceous Flysch of the Ikushumbetsu Area, Hokkaido, Japan. Geological Survey of Japan, Report 242, 31 p.Google Scholar
Tanaka, K. and Sumi, Y. 1981. Cretaceous paleocurrents in the Central Zone of Hokkaido, Japan. Geological Survey of Japan Bulletin, 32:65128.Google Scholar
Taylor, D. R., and Walker, R. G. 1984. Depositional environments and paleogeography in the Albian Moosebar Formation and adjacent fluvial Gladstone and Beaver Mines Formations, Alberta. Canadian Journal of Earth Sciences, 21:698714.Google Scholar
Ulrich, E. O. 1904. Fossils and age of the Yakutat Formation. Descriptions of collections made chiefly near Kodiak, Alaska. Harriman Alaska Series 4 (Geology and Paleontology):125146.Google Scholar
Vialov, O. S. 1971. Redkie problematiki iz mesozoya Pamira: Kaukaza. Paleontologicheskiy Sbornik, 7:8593.Google Scholar
Volgeltanz, R., and Stradner, H. 1971. Scolicien-massen-vorkommen im Salzburger Oberkreide-flysch. Verhandlungen der Geologischen Bundesanstalt, 1:19.Google Scholar
Walcott, C. D. 1890. Descriptive notes of new genera and species from the Lower Cambrian or Olenellus Zone. Proceedings of the U.S. National Museum, 12:3346.Google Scholar
Walker, R. G. 1984. Turbidites and associated coarse clastic deposits, p. 171188. In Walker, R. G. (ed.), Facies Models. Geoscience Canada Reprint Series 1.Google Scholar
Webby, B. D. 1969. Trace fossils (Pasichnia) from the Silurian of New South Wales, Australia. Paläontologische Zeitschrift, 43:8194.Google Scholar
Webby, B. D. 1970. Late Precambrian trace fossils from New South Wales. Lethaia, 3:79109.Google Scholar
Webby, B. D. 1984. Precambrian–Cambrian trace fossils from western New South Wales. Australian Journal of Earth Sciences, 31:427437.Google Scholar
Weller, S. 1899. Kinderhook faunal studies. I. The fauna of the vermicular sandstone at Northview, Webster County, Missouri. Transactions of the Academy of Science of St. Louis, 9:951.Google Scholar
Wetzel, A. 1983. Biogenic structures in modern slope to deep-sea sediments in the Sulu Sea Basin (Philippines). Palaeogeography, Palaeoclimatology, Palaeoecology, 42:285304.Google Scholar
Wrigley, R. L., and Emery, K. O. 1967. Benthic animals, particularly Hyalinoecia (Annelida) and Ophiomusium (Echinodermata), in sea-bottom photographs from the continental slope, p. 235250. In Hersey, J. B. (ed.), Deep-Sea Photography. The Johns Hopkins Oceanographic Studies 3, Johns Hopkins Press, Baltimore.Google Scholar
Yang, S., Song, Z., and Liang, D. 1982. Middle Jurassic to Early Cretaceous flysch trace fossils from Ngari Region, Tibet. Acta Geologica Sinica, 56:302316.Google Scholar
Yen, C.-C. 1987. A deep water trace fossil assemblage from Wheeler Gorge, Ventura County, California, p. 4955. In Bottjer, D. J. (ed.), New Concepts in the Use of Biogenic Sedimentary Structures for Paleoenvironmental Interpretation. Pacific Section, Society of Economic Paleontologists and Mineralogists, Volume and Guidebook, Book 52.Google Scholar
Young, F. G. 1972. Early Cambrian and older trace fossils from the Southern Cordillera of Canada. Canadian Journal of Earth Sciences, 9:117.Google Scholar
Zapata, E. J. 1979. Definicion de las lithofacies y breve resumen del analisis comparative del deposito segun modelos de sedimentacion profunda, en parte de la Formacion Guarico, Estados Miranda y Anzoategui. Geos, 24:5360.Google Scholar
Zenker, J. C. 1836. Historisch-topographisches Taschenbuch von Jena und seiner Umgebung besonders in naturwissenschaftlicher und medicinischer Beziehung. Wackenhoder, Jena, 338 p.Google Scholar