Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T13:21:35.969Z Has data issue: false hasContentIssue false

The first aragonitic rugose coral

Published online by Cambridge University Press:  14 July 2015

J. Wendt*
Affiliation:
Institut und Museum für Geologie und Paläontologie der Universität Tübingen, Sigwartstrasse 10, West Germany

Abstract

Microstructural and compositional data support the view that the skeletons of rugose corals consisted of (probably high-Mg) calcite, unlike the skeletons of scleractinian corals which are predominantly aragonitic. Total transformation of a late Permian rugose coral skeleton into neomorphic calcite and a significant trace element composition, however, show that aragonite was present in some Rugosa shortly prior to the extinction of this order. This finding sheds new light on the possible phylogenetic relationship between Rugosa and Scleractinia, which still possess a different mode of septal insertion and remain separated by an as yet coral-free interval in the Lower Triassic.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bathurst, R. G. C. 1975. Carbonate Sediments and Their Diagenesis. Second enlarged edition. Developments in Sedimentology, 12, Elsevier Publishing Company, Amsterdam, 658 p.Google Scholar
B⊘ggild, O. B. 1930. The shell structure of the molluscs. Mémoires de l'Académie Royale des Sciences et des Lettres de Danemark, Section des Sciences, sér. 9, 2:231326.Google Scholar
Brand, U. 1989. Aragonite-calcite transformation based on Pennsylvanian molluscs. Geological Society of America Bulletin, 101:377390.2.3.CO;2>CrossRefGoogle Scholar
Cuif, J. -P. 1977. Arguments pour une relation phylétique entre les Madréporaires paléozoiques et ceux du Trias. Implications systématiques de l'analyse microstructurale des Madréporaires triasiques. Mémoires de la Societé Géologique de France, nouvelle série, 56, Mémoire, 129:154.Google Scholar
Feigl, F. 1954. Spot Tests. Elsevier Publishing Company, London, 518 p.Google Scholar
Flügel, H. W. 1976. Numidiaphyllidae—eine neue Familie der Rugosa aus dem Ober-Perm von Süd-Tunis. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1976:5464.Google Scholar
Houck, J. E., Buddemeier, R. W., and Chave, K. E. 1975. Skeletal low-magnesium calcite in living scleractinian corals. Science, 189:997999.CrossRefGoogle ScholarPubMed
James, N. P. 1974. Diagenesis of scleractinian corals in the subaerial vadose environment. Journal of Paleontology, 48:785799.Google Scholar
Johnson, J. H. 1971. An Introduction to the Study of Organic Limestones. Revised edition. Quarterly of the Colorado School of Mines, 66, 2, 185 p.Google Scholar
Macintyre, I. G., and Towe, K. M. 1976. Skeletal calcite in living scleractian corals: microboring fillings, not primary skeletal deposits. Science, 193:701702.CrossRefGoogle Scholar
Milliman, J. D. 1974. Marine Carbonates. Springer-Verlag, Berlin, 375 p.Google Scholar
Montanaro-Gallitelli, E., Morandi, N., and Pirani, R. 1974. Corallofauna triassica aragonitica ad alto contenuto in stronzio: studio analitico e considerazioni. Bollettino della Società Paleontologica Italiana, 12:130144.Google Scholar
Newell, N. D., Rigby, J. K., Driggs, A., Boyd, D. W., and Stehli, F. G. 1976. Permian reef complex, Tunisia. Brigham Young University, Geological Studies, 23:75112.Google Scholar
Oekentorp, K. 1980. Aragonit und Diagenese bei jungpaläozoischen Korallen. Münsterische Forschungen für Geologie und Paläontologie, 52:119239.Google Scholar
Oliver, W. A. Jr. 1980. The relationship of the scleractinian corals to the rugose corals. Paleobiology, 6:146160.CrossRefGoogle Scholar
Richter, D. K. 1972. Authigenic quartz preserving skeletal material. Sedimentology, 19:211218.CrossRefGoogle Scholar
Sandberg, P. A. 1975. Bryozoan diagenesis: bearing on the nature of the original skeleton of rugose corals. Journal of Paleontology, 49:587606.Google Scholar
Sandberg, P. A., and Hudson, J. D. 1983. Aragonite relic preservation in Jurassic calcite-replaced bivalves. Sedimentology, 30:879892.CrossRefGoogle Scholar
Scherer, M. 1986. Diagenesis of aragonitic sponges from Permian patch reefs of southern Tunisia, p. 291310. In Schroeder, J. H. and Purser, B. H. (eds.), Reef Diagenesis. Springer-Verlag, Berlin-Heidelberg.CrossRefGoogle Scholar
Sorauf, J. E. 1977. Microstructure and magnesium content in Lophophyllidium from the Lower Pennsylvanian of Kentucky. Journal of Paleontology, 51:150160.Google Scholar
Sorauf, J. E. 1978. Original structure and composition of Permian rugose and Triassic scleractinian corals. Palaeontology, 21:321339.Google Scholar
Sorauf, J. E. 1984. Upper Permian corals from Timor and diagenesis. Palaeontographica Americana, 54:294302.Google Scholar
Stehli, F. G. 1956. Shell mineralogy in Paleozoic invertebrates. Science, 123:10311032.CrossRefGoogle ScholarPubMed
Termier, H., Termier, G., and Vachard, D. 1977. Monographie paléontologique des affleurements permiens du Djebel Tebaga (Sud Tunisien). Palaeontographica, A, 156:1109.Google Scholar
Wendt, J. 1977. Aragonite in Permian reefs. Nature, 267:335337.CrossRefGoogle Scholar
Wendt, J. 1984. Skeletal and spicular mineralogy, microstructure and diagenesis of coralline calcareous sponges. Palaeontographica Americana, 54:326336.Google Scholar