Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T14:56:00.944Z Has data issue: false hasContentIssue false

The first record of Hirnantian Ostracoda in South America: implications for the biostratigraphy and paleozoogeography of the Paraná basin

Published online by Cambridge University Press:  22 September 2021

Lívio Reily de Oliveira Gonçalves
Affiliation:
Institute of Geosciences, University of Brasília, Brasília, Brazil70910-900 , , , ,
Dermeval Aparecido Do Carmo*
Affiliation:
Institute of Geosciences, University of Brasília, Brasília, Brazil70910-900 , , , ,
Maria José Salas
Affiliation:
Center for Research in Earth Sciences, National Scientific and Technical Research Council, Córdoba, ArgentinaX5016GCA
Rodrigo Rodrigues Adôrno
Affiliation:
Institute of Geosciences, University of Brasília, Brasília, Brazil70910-900 , , , , Geological Survey of Brazil, Center for Technological Development, Brasília, Brazil, 70040-904
Tõnu Meidla
Affiliation:
Department of Geology, University of Tartu, Tartu, Estonia50411
Matheus Denezine
Affiliation:
Institute of Geosciences, University of Brasília, Brasília, Brazil70910-900 , , , ,
Lívia Cardoso da Silva Rodrigues
Affiliation:
Institute of Geosciences, University of Brasília, Brasília, Brazil70910-900 , , , ,
Mario Luis Assine
Affiliation:
Department of Geology, São Paulo State University, Rio Claro, Brazil13506-752
Lucas Silveira Antonietto
Affiliation:
Institute of Geosciences, University of Brasília, Brasília, Brazil70910-900 , , , ,
*
*Corresponding author

Abstract

Herein is reported the first occurrence of ostracodes from the Iapó Formation, an uppermost Ordovician unit of the Rio Ivaí Group in the Paraná basin, Brazil. Two ostracode species were identified in the Três Barras Farm section: Harpabollia harparum (Troedsson, 1918) and Satiellina paranaensis Adôrno and Salas in Adôrno et al., 2016 were recovered from dropstone-bearing shale overlying glaciogenic diamictites, a feature typical of Hirnantian (uppermost Ordovician) strata throughout Gondwana. The taxonomy of the Genus Harpabollia, as well as its type species Harpabollia harparum, was reviewed, and emended and new diagnoses were respectively proposed for each taxon. Occurrences of Harpabollia harparum and Satiellina species were common in areas influenced by cold waters. Additionally, the occurrence of Harpabollia harparum, an index species to the uppermost Ordovician of several stratigraphic units in Baltica and southern Gondwana, allowed us to infer a Hirnantian age for the deposits of the Iapó Formation. Other than being associated with Harpabollia harparum in Iapó Formation of the Paraná basin, Satiellina paranaensis is also found in lower levels of the Vila Maria Formation; therefore, these are also considered Hirnantian in age. Above these lower levels of the Vila Maria Formation, a well-dated Rhuddanian (lowermost Llandovery, Silurian) palynomorph assemblage is observed within the formation. These occurrences are evidence of a continuous process of sedimentary deposition during the Ordovician–Silurian transition in the Paraná basin.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abushik, A.F., Ivanova, V.A., Kochetkova, N.M., Martynova, G.P., Netskaya, A.I., and Rozhdestvenskaya, A.A., 1960, Novye paleozoyskie ostrakody Russkoy i Sibirskoy platform, Urala i Pechorskoy gryady, in Markovskiy, B.P., ed., Novye Vidy Drevnikh Rasteniy i Bespozvonochnykh SSSR: Moscow, Gosgeoltekhizdat, p. 280366. [in Russian]Google Scholar
Adôrno, R.R., 2014, Estudo cronobioestratigráfico da Formação Vila Maria: litoestratigrafia e paleontologia do limite Ordoviciano-Siluriano da bacia do Paraná, estados de Goiás e de Mato Grosso, Brasil Central [M.Sc. dissertation]: Brasília, University of Brasília, 84 p.Google Scholar
Adôrno, R.R., Do Carmo, D.A., Salas, M.J., Zabini, C., and Assine, M.L., 2016, The earliest Ostracoda record from Brazil: Vila Maria Formation, Rio Ivaí Group, Paraná basin, central Brazil: Revista Brasileira de Paleontologia, v. 19, p. 379388.CrossRefGoogle Scholar
Alvarenga, C.J.S., Guimarães, E.M., Assine, M.L., Perinotto, J.A.J., and Laranjeira, N.P.F., 1998, Seqüência Ordovício-Siluriana e Devoniana no flanco norte da Bacia do Paraná: Anais da Academia Brasileira de Ciências, v. 70, p. 587606.Google Scholar
Assine, M.L., Soares, P.C., and Milani, E.J., 1994, Sequências tectono-sedimentares mesopaleozóicas do Paraná, Sul do Brasil: Revista Brasileira de Geociências, v. 24, p. 7789.CrossRefGoogle Scholar
Assine, M.L., Alvarenga, C.J.S., and Perinotto, J.A.J., l998, Formação Iapó: glaciação continental no limite Ordoviciano/Siluriano da Bacia do Paraná: Revista Brasileira de Geociências, v. 28, p. 5160.CrossRefGoogle Scholar
Basset, M.G., Popov, L.E., Aldridge, R.J., Gabbott, S.E., and Theron, J.N., 2009, Brachiopoda from the Soom Shale Lagerstätte (Upper Ordovician, South Africa): Journal of Paleontology, v. 83, p. 614623.CrossRefGoogle Scholar
Bassler, R.S., and Kellett, B., 1934, Bibliographic index of Paleozoic Ostracoda: Geological Society of America Special Papers, v. 1, 500 p.Google Scholar
Benedetto, J.L., and Muñoz, D.F., 2015, Linguloidean brachiopods from the Lower Ordovician (Tremadocian) of northwestern Argentina: Bulletin of Geosciences, v. 90, p. 417430.CrossRefGoogle Scholar
Benedetto, J.L., Halpern, K., and Inchausti, J.C.G., 2013, High-latitude Hirnantian (latest Ordovician) brachiopods from the Eusebio Ayala Formation of Paraguay, Paraná basin: Palaeontology, v. 56, p. 6178.CrossRefGoogle Scholar
Benedetto, J.L., Halpern, K., de la Puente, G.S., and Monaldi, C.R., 2015, An in situ shelly fauna from the lower Paleozoic Zapla diamictite of northwestern Argentina: implications for the age of glacial events across Gondwana: Journal of South American Earth Sciences, v. 64, p. 166182.CrossRefGoogle Scholar
Bouček, B., 1936, Die ostracoden des Böhmischen Ludlows (Stufe): Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, v. 76, p. 3198.Google Scholar
Braddy, S.J., Tollerton, V.P. Jr., Racheboeuf, P.R., and Schallreuter, R., 2004, Eurypterids, phyllocarids and ostracodes, in Webby, B.D., Paris, F., Droser, M.L., and Percival, I.G., eds., The Great Ordovician Biodiversification Event: New York, Columbia University Press, p. 255265.CrossRefGoogle Scholar
Brenchley, P.J., Carden, G.A., Hints, L., Kaljo, D., Marshall, J.D., Martma, T., Meidla, T., and Nõlvak, J., 2003, High-resolution stable isotope stratigraphy of Upper Ordovician sequences: constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation: Geological Society of America Bulletin, v. 115, p. 89104.2.0.CO;2>CrossRefGoogle Scholar
Burjack, M.I.A., and Popp, M.T.B, 1981, A ocorrência do icnogênero Arthrophycus no Paleozóico da bacia do Paraná: Pesquisas em Geociências, v. 14, p. 163168.CrossRefGoogle Scholar
Calner, M., Erlström, M., Eriksson, M., Ahlberg, P., and Lehnert, O., 2013, Regional geology of the Skåne province, Sweden, in Calner, M., Ahlberg, P., Lehnert, O., and Erlström, M., eds., The Lower Palaeozoic of Southern Sweden and the Oslo Region, Norway: Sveriges Geologiska Undersökning, Rapporter och Meddelanden 133, p. 936.Google Scholar
Caputo, M.V., 1998, Ordovician–Silurian glaciations and global sea-level changes, in Landing, E., and Johnson, M.E., eds., Silurian Cycles: Linkages of Dynamic Stratigraphy with Atmospheric, Oceanic, and Tectonic Changes: New York, New York State Museum, p. 1525Google Scholar
Cishowolski, M., Rustán, J.J., and Uriz, N.J., 2019, Ascocerid cephalopods from the Hirnantian?–Llandovery stages of the southern Paraná basin (Paraguay, South America): first record from high paleolatitudes: Journal of Paleontology, v. 93, p. 3747.CrossRefGoogle Scholar
Cocks, L.R.M., and Torsvik, T.H., 2020, Ordovician palaeogeography and climate change: Gondwana Research, https://doi.org/10.1016/j.gr.2020.09.008.Google Scholar
Corradini, C., Pondrelli, M., Suttner, T.J., and Schönlaub, H.P., 2015, The pre-Variscan sequence of the Carnic Alps: Berichte der Geologischen Bundesanstalt, v. 111, p. 540.Google Scholar
Federal Geographic Data Committee, 2006, FGDC Digital Cartographic Standard for Geologic Map Symbolization, Document Number FGDC-STD-013-2006: Reston, U.S. Geological Survey, 290 p.Google Scholar
Gailite, I.K., 1968, Paleontological characteristic of adjacent Ordovician and Silurian deposits in Latvia, in Grigelis, A.A., ed., Stratigraphy of the Baltic Lower Paleozoic and Its Correlation with Other Areas: Vilnius, Mintis, p. 130138. [in Russian, with English summary]Google Scholar
Gailite, I.K., 1970, Ostracodes from the Kuldiga Member of the Upper Ordovician of Latvia, in Ministry of Geology of thе USSR, and thе Geological Institute of Vilnius., eds., Palaeontology and Stratigraphy of thе Baltic and thе Byelorussia, Number 2: Vilnius, Mintis, p. 1931. [in Russian]Google Scholar
Gray, J., Colbath, G.K., Faria, A., Boucot, A.J., and Rohr, D.M., 1985, Silurian-age fossils from the Paraná basin, southern Brazil: Geology, v. 13, p. 521525.2.0.CO;2>CrossRefGoogle Scholar
Gubanov, A.P., and Bogolepova, O.K., 1999, Minute fossils from the Ordovician Uggwa limestone of the Austrian Carnic Alps: Acta Universitatis Carolinae—Geologica, v. 43, p. 417420.Google Scholar
Harlan, R., 1831, Description of an extinct species of fossil vegetable, of the family Fucoides: Journal of the Academy of Natural Sciences of Philadelphia, v. 6, p. 289295.Google Scholar
Harris, M.T., Sheehan, P.M., Ainsaar, L., Hints, L., Männik, P., Nõlvak, J., and Rubel, M., 2004, Upper Ordovician sequences of western Estonia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 210, p. 135148.CrossRefGoogle Scholar
Havlíček, V., 1999, Lochkovian brachiopods of the Prague basin (Lower Devonian, Czech Republic): Bulletin of Geosciences, v. 74, p. 299322.Google Scholar
Havlíček, V., and Mergl, M., 1988, Two new discinid genera (Brachiopoda) from the Silurian and Devonian of the Prague basin, Czechoslovakia: Věstník Ústředniho Ústavu Geologického, v. 63, p. 169172.Google Scholar
Havlíček, V., and Vaněk, J., 1966, The biostratigraphy of the Ordovician of Bohemia: Sborník Geologických Věd, Paleontologie, v. 8, p. 769.Google Scholar
Henningsmoen, G., 1953, Classification of Paleozoic straight-hinged ostracods: Norsk Geologisk Tidsskrift, v. 31, p. 185288.Google Scholar
Henningsmoen, G., 1965, On certain features of palaeocope ostracodes: Geologiska Föreningens i Stockholm Förhandlingar, v. 86, p. 329394.CrossRefGoogle Scholar
Hinz-Schallreuter, I., and Schallreuter, R., 2007, Ostrakoden-faunenprovinzen und paläogeographie Gondwanas und Perigondwanas im Ordovizium: Freiberger Forschungshefte, v. 524, p. 4784.Google Scholar
Keller, M., and Lehnert, O., 1998, The Rio Sassito sedimentary succession (Ordovician): a pinpoint in the geodynamic evolution of the Argentine Precordillera: Geologische Rundschau, v. 87, p. 326344.CrossRefGoogle Scholar
Kesling, R.V., 1951, Terminology of ostracod carapaces: Contributions from the Museum of Paleontology, University of Michigan, v. 9, p. 93171.Google Scholar
Kozur, H., 1972, Einige bemerkungen zur systematik der ostracoden und beschreibung neuer Platycopida aus der Trias Ungarns und der Slowakei: Geologisch-Paläontologische Mitteilungen Innsbruck, v. 2, no. 10, p. 127.Google Scholar
Landing, E., Mohibullah, M., and Williams, M., 2013, First Middle Ordovician ostracods from Western Avalonia: paleogeographical and paleoenvironmental significance: Journal of Paleontology, v. 87, p. 269276.CrossRefGoogle Scholar
Latreille, P.A., 1802, Histoire Naturelle, Générale et Particulière des Crustacés et des Insectes, v. 1: Paris, F. Dufart, 382 p.Google Scholar
Le Heron, D.P., and Howard, J., 2010, Evidence for Late Ordovician glaciation of Al Kufrah basin, Libya: Journal of African Earth Sciences, v. 58, p. 354364.CrossRefGoogle Scholar
Liebau, A., 2005, A revised classification of the higher taxa of the Ostracoda (Crustacea): Hydrobiologia, v. 538, p. 115137.CrossRefGoogle Scholar
Martinsson, A., 1962, Ostracodes of the family Beyrichiidae from the Silurian of Gotland: Publications from the Palaeontological Institution of the University of Uppsala, v. 41, 369 p.Google Scholar
Meidla, T., 1996, Latest Ordovician ostracodes of Estonia: Fossilia Baltica, v. 2, 222 p.Google Scholar
Meidla, T., 2007, Ostracods from the Upper Ordovician Borenshult fauna, Sweden: GFF, v. 129, p. 123132.CrossRefGoogle Scholar
Meidla, T., Ainsaar, L., and Truuver, K., 2011, Ostracods in Baltoscandia through the Hirnantian crises, in Gutiérrez-Marco, J.C., Rábano, I., and García-Bellido, D., eds., Ordovician of the World: Cuadernos del Museo Geominero 14, p. 353357.Google Scholar
Meidla, T., Tinn, O., Salas, M.J., Williams, M., Siveter, D., Vandenbroucke, T.R.A., and Sabbe, K., 2013, Biogeographical patterns of Ordovician ostracods, in Harper, D.A.T., and Servais, T., eds., Early Palaeozoic Biogeography and Palaeogeography: Geological Society of London Memoirs 38, p. 337354.Google Scholar
Melnikova, L.M., 1986, Ordovikskie ostrakody Kazahstana: Trudy Paleontologicheskogo Instituta, v. 218, 103 p.Google Scholar
Melnikova, L.M., 2010, Some ostracodes from the Gur'yanovka Formation (Upper Ordovician) of northeastern Gorny Altai: Paleontological Journal, v. 44, p. 399408.CrossRefGoogle Scholar
Melnikova, L.M., 2011, Ostracodes from the Tuloi and Karasu Formations (Ordovician) of Northeastern Gorny Altai: Paleontological Journal, v. 45, p. 6064.CrossRefGoogle Scholar
Miall, A.D., 1985, Architectural-element analysis: a new method of facies analysis applied to fluvial deposits: Earth Science Reviews, v. 22, p. 261308.CrossRefGoogle Scholar
Milani, E.J., Melo, J.H.G., Souza, P.A., Fernandes, L.A., and França, A.B., 2007, A Bacia do Paraná: Boletim de Geociências da Petrobrás, v. 15, p. 265287.Google Scholar
Mizusaki, A.M.P., Melo, J.H.G., Vignol-Lelarge, M.L., and Steemans, P., 2002, Vila Maria Formation (Silurian, Paraná basin, Brazil): integrated radiometric and palynological age determinations: Geological Magazine, v. 139, p. 453463.CrossRefGoogle Scholar
Mohibullah, M., Williams, M., Vandenbroucke, T.R.A., Sabbe, K., and Zalasiewicz, J.A., 2012, Marine ostracod provinciality in the Late Ordovician of palaeocontinental Laurentia and its environmental and geographical expression: PLoS ONE, v. 7, e41682, https://doi.org/10.1371/journal.pone.0041682CrossRefGoogle ScholarPubMed
Mohibullah, M., Williams, M., and Zalasiewicz, J., 2013, Late Ordovician ostracods of the Girvan District, south-west Scotland: Monographs of the Palaeontographical Society, v. 167, p. 140.CrossRefGoogle Scholar
Neto de Carvalho, C.N., Fernandes, A.C.S., and Borghi, L., 2003, Diferenciação das icnoespécies e variantes de Arthrophycus e sua utilização problemática em icnoestratigrafia: o resultado de homoplasias comportamentais entre anelídeos e artrópodes?: Revista Española de Paleontología, v. 18, p. 221228.Google Scholar
Nilsson, R., 1979, A boring through the Ordovician–Silurian boundary in western Scania, south Sweden: Sveriges Geologiska Undersökning, v. 766, p. 118.Google Scholar
Öpik, A., 1935, Ostracoda from the Lower Ordovician Megalaspis-limestone of Estonia and Russia: Tartu Ülikooli Goloogia-Instituudi Toimetused, v. 44, 12 p.Google Scholar
Podhalańska, T., 2014, Wstęp, in Podhalańska, T., ed., Kętrzyn IG 1, IG 2: Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego 138, p. 78.Google Scholar
Popp, M.T.B., Burjack, M.I.A., and Esteves, I.R.F., 1981, Estudo preliminar sobre o conteúdo paleontológico da Formação Vila Maria (pré-Devoniano) da Bacia do Paraná: Pesquisas em Geociências, v. 14, p. 169180.CrossRefGoogle Scholar
Robardet, M., Henry, J.L., Nion, J., Paris, F., and Pillet, J., 1972, La Formation du Pont-de-Caen (Caradocien) dans les synclinaux de Domfront et de Sees (Normandie): Annales de la Société Géologique du Nord, v. 92, p. 117137.Google Scholar
Röhlich, P., 2007, Structure of the Prague basin: the deformation diversity and its causes (the Czech Republic): Bulletin of Geosciences, v. 82, p. 175182.CrossRefGoogle Scholar
Salas, M.J., 2007, Assessing the biodiversity of Ordovician ostracods from the Argentine Precordillera: Journal of Paleontology, v. 81, p. 14421453.CrossRefGoogle Scholar
Salas, M.J., 2011, Biodiversity and composition of the Early Ordovician Ostracods from the Cordillera Oriental, Northwest Argentina: Geological Journal, v. 46, p. 637650.CrossRefGoogle Scholar
Salas, M.J., and Vaccari, N.E., 2012, New insights into the early diversification of the Ostracoda: Tremadocian ostracods from the Cordillera Oriental, Argentina: Acta Palaeontologica Polonica, v. 57, p. 175190.CrossRefGoogle Scholar
Salas, M.J., Vannier, J., and Williams, M., 2007, Early Ordovician ostracods from Argentina: their bearing on the origin of binodicope and palaeocope clades: Journal of Paleontology, v. 81, p. 13841395.CrossRefGoogle Scholar
Salas, M.J., Waisfeld, B.G., and Muñoz, D.F., 2018, Radiation, diversity and environmental expansion of Early Ordovician ostracods: a view from the Southern Hemisphere: Lethaia, v. 52, p. 107122.CrossRefGoogle Scholar
Schallreuter, R., 1972, Drepanellacea (Ostracoda, Beyrichicopida) aus Mittelordovizischen backsteinkalkgeschieben IV. Laterophores hystrix sp. n., Pedomphalella germanica sp. n. und Easchmidtella fragosa (Neckaja): Berichte der Deutschen Gesellschaft für Geologische Wissenschaften. Reihe A, v. 17, p. 139145.Google Scholar
Schallreuter, R., 1973, Die Ostracodengattung Hyperchilarina und das Aparcbites-Problem: Geologiska Föreningen i Stockholm Förhandlingar, v. 95, p. 3748.CrossRefGoogle Scholar
Schallreuter, R., 1988, Ordovizische ostrakoden Australiens: Neues Jahrbuch für Geologie und Paläontologie (Monatschefte), v. 9, p. 571579.CrossRefGoogle Scholar
Schallreuter, R., 1990, Ordovizische ostrakoden und seeigel der Karnischen Alpen und ihre beziehungen zu Böhmen und Baltoskandien: Neues Jahrbuch für Geologie und Paläontologie, Monatschefte, v. 2, p. 120128.CrossRefGoogle Scholar
Schallreuter, R., and Krůta, M., 1988, Ordovician ostracodes of Bohemia: Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, v. 67, p. 99119.Google Scholar
Schallreuter, R.E.L., 1995, On Harpabollia argentina Schallreuter sp. nov.: Stereo-Atlas of Ostracod Shells, v. 22, p. 8285.Google Scholar
Schönlaub, H.P., 1985, Das Cellonprofil, in Daurer, A., and Schönlaub, F.P., eds., Arbeitstagung der Geologischen Bundesanstalt: Vienna, Geologische Bundesanstalt, p. 6369.Google Scholar
Schönlaub, H.P., 1988, The Ordovician–Silurian boundary in the Carnic Alps of Austria, in Cocks, L.R.M., and Rickards, R.B., eds., A Global Analysis of the Ordovician–Silurian Boundary: Bulletin of the British Museum of Natural History (Geology) 43, p. 107115.Google Scholar
Scotese, C.R., 2000, Middle & Late Ordovician climate (440 million years ago). http://www.scotese.com/mlordcli.htm [Jun 2021].Google Scholar
Scotese, C.R., 2014, Atlas of Silurian and Middle–Late Ordovician: PALEOMAP Atlas for ArcGIS, PALEOMAP Project 5, maps 73–80.Google Scholar
Scott, H.W., 1961, Shell morphology of Ostracoda, in Moore, R.C., and Pitrat, C.W., eds., Treatise on Invertebrate Paleontology, Part Q, Arthropoda 3: Geological Society of America and University of Kansas Press, Boulder, Colorado, and Lawrence, Kansas, p. 2137.Google Scholar
Sidaravičiene, N., 1992, Ostrakody Ordovika Litvy: Vilnius, Litovskiy Nauchno-Issledovatel'skiy Geologorazvedochnyy Institut, p. 252.Google Scholar
Stumbur, K., 1956, O faune ostrakod porkuniskogo gorizonta v Estonskoy SSR: Tartu Riikliku Ülikooli Toimetised, v. 42, p. 186194.Google Scholar
Sztejn, J., 1985, Ordovician ostracods in northeastern Poland: Biuletyn Panstwowego Instytutu Geologicznego, v. 350, p. 5389.Google Scholar
Tinn, O., Meidla, T., and Ainsaar, L., 2006, Arenig (Middle Ordovician) ostracods from Baltoscandia: fauna, assemblages and biofacies: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 241, p. 492514.CrossRefGoogle Scholar
Titterton, R., and Whatley, R.C., 1998, The provincial distribution of shallow water Indo-Pacific marine Ostracoda: origins, antiquity, dispersal routes and mechanisms, in Hanai, T., Ikeya, N., and Ishizaki, K., eds., Evolutionary Biology of Ostracoda: Tokyo, Kodansha Ltd., p. 759786.Google Scholar
Tolmacheva, T., Egerquist, E., Meidla, T., and Holmer, L., 2001, Spatial variations in faunal composition, Middle Ordovician, Volkhov Stage, East Baltic: GFF, v. 123, p. 6572.CrossRefGoogle Scholar
Troedsson, G.T., 1918, Om Skanes brachiopodskiffer: Lunds Universitets Årsskrift, v. 15, no. 3, 110 p.Google Scholar
Truuver, K., and Meidla, T., 2015, A Hirnantian deep-water refuge for warm-water ostracods in Baltoscandia: Geological Quarterly, v. 59, p. 738749.CrossRefGoogle Scholar
Ulrich, E.O., and Bassler, R.S., 1923, Paleozoic Ostracoda: their morphology, classification, and occurrence, in Swartz, C.K., Prouty, W.F., Ulrich, E.O., and Bassler, R.S., eds., Silurian: Maryland Geological Survey Systematic Report, p. 271391.Google Scholar
Ul'st, R.Z., Gailite, L.K., and Yakovleva, V.I., 1982, Ordovik Latvii: Riga, Zinatne, p. 294.Google Scholar
Vannier, J., 1983, On Bollia delgadoi Vannier sp. nov.: Stereo-Atlas of Ostracod Shells, v. 10, p. 9598.Google Scholar
Vannier, J.M.C., 1986, Ostracodes Palaeocopa de l'Ordovicien (Arening-Caradoc) Ibero-Armoricain: Paleontographica Abteilung, v. 193, p. 145218.Google Scholar
Vannier, J.M.C., Siveter, D.J., and Schallreuter, R.E.L., 1989, The composition and palaeogeographical significance of the Ordovician ostracode faunas of southern Britain, Baltoscandia, and Ibero-Armorica: Palaeontology, v. 32, p. 163222.Google Scholar
Vaz, P.T., Rezende, N.G.A., Wanderley Filho, M.J.R., and Travassos, W.A.S., 2007, Bacia do Parnaíba: Boletim de Geociências da Petrobrás, v. 15, p. 253263.Google Scholar
Vidal, M., Dabard, M.P., Gourvennec, R., Le Hérissé, A., Loi, A., Paris, F., Plusquellec, Y., and Racheboeuf, P.R., 2011, Le Paléozoïque de la presqu’île de Crozon, massif Armoricain (France): Géologie de la France, v. 1, p. 345.Google Scholar
Wang, K., Chatterton, B.D.E., and Wang, Y., 1997, An organic carbon isotope record of Late Ordovician to Early Silurian marine sedimentary rocks, Yangtze Sea, South China: implications for CO2 changes during the Hirnantian glaciation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 132, p. 147158.CrossRefGoogle Scholar
Weber, H.M., and Becker, G., 2006, Silifizierte ostracoden aus dem Obervisé des Velberter sattels (Unterkarbon; Rheinisches schiefergebirge). Palaeocopida: Senckenbergiana Lethaea, v. 86, p. 2361.CrossRefGoogle Scholar
Williams, M., and Siveter, D.J., 1996, Lithofacies-influenced ostracod associations in the middle Ordovician Bromide Formation, Oklahoma, USA: Journal of Micropaleontology, v. 15, p. 6981.CrossRefGoogle Scholar
Williams, M., Floyd, J.D., Salas, M., Siveter, D.J., Stone, P., and Vannier, J., 2003, Patterns of ostracod migration for the ‘North Atlantic’ region during the Ordovician: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 195, p. 193228.CrossRefGoogle Scholar
Williams, M., Siveter, D.J., Salas, M.J., Vannier, J., Popov, L.E., and Ghobadi Pour, M., 2008, The earliest ostracods: the geological evidence: Senckenbergiana Lethaea, v. 81, p. 1121.CrossRefGoogle Scholar
Zabini, C., Furtado-Carvalho, A.B., Do Carmo, D., and Assine, M.L., 2019, A new discinoid Kosoidea australis sp. nov. from the Iapó and Vila Maria formations, NE Paraná basin, Brazil: Historical Biology, v. 33, p. 534542.CrossRefGoogle Scholar
Zabini, C., Denezine, M., Rodrigues, L.C.S., Gonçalves, L.R.O., Adôrno, R.R., Do Carmo, D.A., and Assine, M.L., 2021, Fossil diversity and taphonomy of glacial and post-glacial lower paleozoic strata, NE Paraná Basin, Brazil: Journal of South American Earth Sciences, v. 111, art. 103470.CrossRefGoogle Scholar