Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-07T23:45:31.463Z Has data issue: false hasContentIssue false

Air Traffic Control and the Jet Aeroplane

Published online by Cambridge University Press:  18 January 2010

Extract

The fact that the de Havilland Comet cruises at nearly double the flying speed and nearly double the flight altitude of comparable piston-engined airliners is a measure of the great leap forward in air transport which the introduction of gas-turbine engines has brought about. It also illustrates an inherent feature of jet aircraft, for only at high speed and high altitude do turbo-jet engines, and to a less critical extent turbo-prop engines, operate at their maximum efficiency, expressed in distance flown per gallon of fuel consumed. With reduction of altitude and speed, however, the fuel consumption does not fall off proportionately and efficiency decreases rapidly. For example, even when taxying on the ground the Comet's fuel consumption is about 70 per cent of that at cruising altitude, and when flying at sea level the still-air distance flown on a given quantity of fuel is less than half of that at cruising altitude. In other words you get the best out of a jet aircraft when you are going somewhere fast, and when the length of the flight is sufficient for the aircraft to climb to its optimum cruising altitude and remain there for a considerable proportion of the flight time.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 1952

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)