Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T09:26:17.788Z Has data issue: false hasContentIssue false

Thermodynamic descriptions of the Cu–Zn system

Published online by Cambridge University Press:  31 January 2011

Wojciech Gierlotka
Affiliation:
Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 300, Taiwan; and Non-Ferrous Metals Department, AGH University of Science and Technology, 30-059 Krakow, Poland
Sinn-wen Chen*
Affiliation:
Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 300, Taiwan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Cu–Zn is an important binary alloy system. In the interested temperature range from 300 to 1500 K, there are eight phases, liquid, Cu, β, β′, γ, δ, ϵ, and Zn phases. The thermodynamic descriptions of the Cu–Zn system are reassessed using the CALPHAD method. A new description of liquid phase and simplified description of body-centered cubic (bcc) phase are proposed. Good agreement has been found among the calculated thermodynamic properties, phase diagram, and the experimental information.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hoyt, S.L.: On the copper-rich kalchoids. J. Inst. Met. 10(2), 235 1904Google Scholar
2Campbell, W.: A note on the constitution of certain tin-bearing brasses. ASTM Proc., 105, (1920).Google Scholar
3Strawbridge, D.J., Hume-Rothery, W., Little, A.T.: The constitution of aluminum–copper–magnesium–zinc alloys. at 460 °C. J. Inst. Met. 74, 191 1948Google Scholar
4Registration Record of International Alloys Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys The Aluminum Association Washington, DC 1987Google Scholar
5Chou, C-Y., Chen, S-W.: Phase equilibria of the Sn–Zn–Cu ternary system. Acta Mater 54(9), 2393 2006CrossRefGoogle Scholar
6Chou, C-Y., Chen, S-W., Chang, Y-S.: Interfacial reactions in the Sn–9Zn–(xCu)Cu and Sn–9Zn–(xCu)Ni couples. J. Mater. Res. 21(7), 1849 2006CrossRefGoogle Scholar
7Fitzner, K., Jendrzejczyk, D., Gierlotka, W.: Ninth Seminar Diffusion and Thermodynamics of Materials 2006 Brno, Czech Republic, Sept 13–15 2006Google Scholar
8Bauer, O., Hansen, M.: Der aufbau der kupfer–zinklegierungen. Z. Metallkd 19, 423 1927 in GermanGoogle Scholar
9Ruer, R., Kremers, K.: Über die Bestimmung der Temperatur des Endes der Erstarrung bei Mischkristallreihen mit Hilfe von Erhitzungskurven. Z. Anorg. Chem 184, 193 1929 in GermanCrossRefGoogle Scholar
10Shramm, J.: An equilibrium study in the Cu–Zn system. Metallwirtschaft 14, 995–10011047–1050 1935Google Scholar
11Hansen, M.: Handbook of Binary Alloys Springer-Verlag Berlin 1936 652–672Google Scholar
12Raynor, G.V.: Annotated Equilibrium Diagram Series,, No. 3 (The Institute of Metals, London, 1944)Google Scholar
13Massalski, T.B., Murray, J.L., Bennet, L.H., Baker, H.: Binary Alloy Phase Diagrams, edited by T.B. Massalski American Society for Metals Materials Park, OH 1986Google Scholar
14Shinoda, G., Amano, Y.: The eutectoid transformation of the β′ phase in Cu–Zn alloys. Trans. Jpn. Inst. Met. 1, 54 1960CrossRefGoogle Scholar
15Rao, S.S., Anantharaman, T.R.: Constitution of brasses below 500 °C. Z. Metallkd. 60, 312 1969Google Scholar
16Parameswaran, K., Healy, G.: A calorimetric investigation of the copper–zinc system. Met. Trans. B 9B, 657 1978CrossRefGoogle Scholar
17von Samson-Himmelstjerna, H-O.: Heat capacity and heat of formation of molten alloys. Z. Metallkd. 28, 197 1936Google Scholar
18Kleppa, O.J., King, R.C.: Heat of formation of the solid solution of zinc, gallium and germanium in copper. Acta Metall. 10, 1183 1962CrossRefGoogle Scholar
19Orr, R.L., Argent, B.B.: Heats of formation of the α-brasses. Trans. Faraday Soc. 61, 2126 1965CrossRefGoogle Scholar
20Korber, F., Oelsen, W.: On the thermochemistry of alloys, III—Heat of formation of binary cast alloys of iron–antimony, cobalt–antimony, nickel–antimony, cobalt–tin, nickel–tin, copper–tin and copper–zinc. Mitt. K. W. I. Fur Eisenforschung. 19, 202 1937Google Scholar
21Weibke, Z.: On the heat of formation in the copper–zinc system. Z. Anorg. Chem. 323, 289 1937CrossRefGoogle Scholar
22Blair, G.R., Downie, D.B.: A calorimetric study of silver–zinc and copper–zinc alloys. Met. Sci. J. 4, 1 1979Google Scholar
23Schneider, A., Schmid, H.: Vapour pressure of zinc and cadmium over their binary liquid alloys with copper, silver and gold. Z. Electrochem. 48, 627 1942Google Scholar
24Everett, L.H., Jacobs, P.W.M., Kitchner, J.A.: The activity of zinc in liquid copper–zinc alloys. Acta Metall. 5, 281 1957CrossRefGoogle Scholar
25Downie, D.B.: Thermodynamic and structural properties of liquid zinc/copper alloys. Acta Metall. 12, 875 1964CrossRefGoogle Scholar
26Azakami, T., Yazawa, A.: Activities of ink and cadmium in liquid copper base alloys. J. Min. Met. Inst. Jpn. 84, 1663 1968Google Scholar
27Solovev, S.L., Knyazev, M.V., Ivanov, Y.I., Vanyukov, A.V.: Mass spectrometric study of the partial characteristics of zinc in copper–zinc system. Zavod. Lab. 45, 841 1979Google Scholar
28Sugino, S., Hagiwara, H.: Activity of zinc in molten copper and copper–gold alloys. Nippon Kinzoku Gakaishi 50, 186 1986Google Scholar
29Leitgebel, W.: Evaporation of metals and alloys under atmospheric pressure. Z. Angor. Chem. 202, 305 1931Google Scholar
30Baker, E.H.: Vapour pressure and thermodynamic behaviour of liquid zinc–copper alloys at 1150 °C. Trans. Inst. Min. Metall. C 79, C1 1970Google Scholar
31Kleppa, O.J., Thalmayer, C.E.: An E.M.F. investigation of binary liquid alloys rich in zinc. J. Phys. Chem. 63, 1953 1959CrossRefGoogle Scholar
32Gerling, U., Predel, B.: On the thermodynamic properties of liquid copper–zinc alloys. Z. Metallkd. 71, 158 1980Google Scholar
33Argent, B.B., Wakeman, D.W.: Thermodynamic properties of solid solutions, Part I—Copper + zinc solid solution. Trans. Faraday Soc. 54, 799 1958CrossRefGoogle Scholar
34Masson, D.B., Sheu, J.: Variation in the composition dependence of the activity coefficient terminal solid solution of Ag–Zn, Ag–Cd and Cu–Zn. Metall. Trans. 1, 3005 1970CrossRefGoogle Scholar
35Seith, W., Krauss, W.: The diffusion and vapour pressure in zinc in brasses. Z. Electrochem. 44, 98 1938Google Scholar
36Hargreaves, R.: The vapour pressure of zinc in brasses. J. Inst. Met. 64, 115 1939Google Scholar
37Pemsler, J.P., Rapperport, E.J.: Thermodynamic activity measurements using atomic absorption: copper–zinc. Trans. AIME 245, 1395 1969Google Scholar
38Olander, A.: An electrochemical investigation of brasses. Z. Phys. Chem. 164, 428 1933 .9Google Scholar
39 PURE 4.4 SGTE Pure Elements (Unary) Database (Scientific Group Thermodata Europe, 1991–2006)Google Scholar
40Spencer, P.J.: A thermodynamic evaluation of the Cu–Zn system. Calphad 10, 175 1986CrossRefGoogle Scholar
41Kowalski, M., Spencer, P.J.: Thermodynamic reevaluation of the Cu–Zn system. J. Phase Equilibria 14, 432 1993CrossRefGoogle Scholar
42ThermoCalc v. R., (Foundation of Computational Thermodynamics, Stockholm, Sweden, 2006).Google Scholar
43 Pandat, CompuTherm LLC, 437 S. Yellowstone Dr., Suite 217, Madison, WI 53719Google Scholar
44Jantzen, T., Spencer, P.J.: Thermodynamic assessments of the Cu–Pb–Zn and Cu–Sb–Zn systems. Calphad 22, 417 1998CrossRefGoogle Scholar
45Atkins, P.W., de Paula, J.: Atkins’ Physical Chemistry, 7th ed. (Oxford University Press, 2001)Google Scholar