Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T04:52:51.435Z Has data issue: false hasContentIssue false

Thermally Induced Structural Transformations on Polymorphous Silicon

Published online by Cambridge University Press:  03 March 2011

Chandana Rath
Affiliation:
GRMT, Departament de Física, Universitat de Girona, Campus Montilivi, Edif. PII, E17071-Girona, Catalonia, Spain; and School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi, India
J. Farjas*
Affiliation:
GRMT, Departament de Física, Universitat de Girona, Campus Montilivi, Edif. PII, E17071-Girona, Catalonia, Spain
P. Roura
Affiliation:
GRMT, Departament de Física, Universitat de Girona, Campus Montilivi, Edif. PII, E17071-Girona, Catalonia, Spain
F. Kail
Affiliation:
LPICM (UMR 7647 CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex, France
P. Roca i Cabarrocas
Affiliation:
LPICM (UMR 7647 CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex, France
E. Bertran
Affiliation:
FEMAN, Departament de Física Aplicada i Optica, Universitat de Barcelona, E08028, Barcelona, Catalonia, Spain
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Polymorphous Si is a nanostructured form of hydrogenated amorphous Si that contains a small fraction of Si nanocrystals or clusters. Its thermally induced transformations such as relaxation, dehydrogenation, and crystallization have been studied by calorimetry and evolved gas analysis as a complementary technique. The observed behavior has been compared to that of conventional hydrogenated amorphous Si and amorphous Si nanoparticles. In the temperature range of our experiments (650–700 °C), crystallization takes place at almost the same temperature in polymorphous and in amorphous Si. In contrast, dehydrogenation processes reflect the presence of different hydrogen states. The calorimetry and evolved gas analysis thermograms clearly show that polymorphous Si shares hydrogen states of both amorphous Si and Si nanoparticles. Finally, the total energy of the main Si–H group present in polymorphous Si has been quantified.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fontcuberta, A., Morral, I., Hofmeister, H. and Cabarrocas, P. Roca i: Structure of plasma-deposited polymorphous silicon. J. Non-Cryst. Solids 299–302, 284 (2002).CrossRefGoogle Scholar
2Butté, R., Meaudre, R., Meaudre, M., Vignoli, S., Longeaud, C., Keider, J.P. and Cabarrocas, P. Roca i: Some electronic and metastability properties of a new nanostructured material: Hydrogenated polymorphous silicon. Philos. Mag. B 79, 1079 (1999).CrossRefGoogle Scholar
3Brinza, M., Adriaensens, G. and Cabarrocas, P. Roca i: Time-of-flight measurements of carrier drift mobilities in polymorphous silicon. Thin Solid Films 427, 123 (2003).CrossRefGoogle Scholar
4Kleider, J.P., Longeaud, C., Gauthier, M., Meaudre, M., Meaudre, R., Butté, R., Vignoli, S. and Cabarrocas, P. Roca i: Very low densities of localized states at the Fermi level in hydrogenated polymorphous silicon from capacitance and space-charge-limited current measurements. Appl. Phys. Lett. 75, 3351 (1999).CrossRefGoogle Scholar
5Tchakarov, S., Cabarrocas, P. Roca i, Dutta, U., Chatterjee, P. and Equer, E.: Experimental study and modeling of reverse-bias dark currents in PIN structures using amorphous and polymorphous silicon. J. Appl. Phys. 94, 7317 (2003).CrossRefGoogle Scholar
6Poissant, Y., Chatterjee, P. and Cabarrocas, P. Roca i: Analysis and optimization of the performance of polymorphous silicon solar cells: Experimental characterization and computer modeling. J. Appl. Phys. 94, 7305 (2003).CrossRefGoogle Scholar
7Voyles, P.M. and Abelson, J.R.: Medium-range order in amorphous silicon measured by fluctuation electron microscopy. Sol. Energy Mater. Sol. Cells 78, 85 (2003).CrossRefGoogle Scholar
8Lebib, S. and Cabarrocas, P. Roca i: Structure and hydrogen bonding in plasma deposited polymorphous silicon thin films. Eur. Phys. J. AP 26, 17 (2004).CrossRefGoogle Scholar
9Meaudre, R., Butté, R., Vignoli, S., Meaundre, M., Saviot, L., Marty, O. and Cabarrocas, P. Roca i: Structural properties and recombination processes in hydrogenated polymorphous silicon. Eur. Phys. J. 22, 171 (2003).Google Scholar
10Beyer, W. and Wagner, A.: Determination of the hydrogen diffusion-coefficient in hydrogenated amorphous-silicon from hydrogen effusion experiments. J. Appl. Phys. 53, 8745 (1982).CrossRefGoogle Scholar
11Jiang, X., Beyer, W. and Reichelt, K.: Gas evolution from hydrogenated amorphous-carbon films. J. Appl. Phys. 68, 1378 (1990).CrossRefGoogle Scholar
12Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M. and Jacobson, D.C.: Heat of crystallization and melting point of amorphous silicon. Appl. Phys. Lett. 42, 698 (1983).CrossRefGoogle Scholar
13Sinke, W.C., Roorda, S. and Saris, F.W.: Variable strain-energy in amorphous-silicon. J. Mater. Res. 3, 1201 (1988).CrossRefGoogle Scholar
14Roura, P. and Farjas, J. (unpublished).Google Scholar
15Farjas, J., Serra-Miralles, J., Roura, P., Cabarrocas, P. Roca i and Bertran, E.: Anomalous crystallization kinetics of a-Si:H at high heating rates. J. Mater. Res. 20, 277 (2005).CrossRefGoogle Scholar
16Bertran, E., Sharma, S.N., Viera, G., Costa, J., St’ahel, P. and Cabarrocas, P. Roca i: Effect of the nanoparticles on the structure and crystallization of amorphous silicon thin films produced by rf glow discharge. J. Mater. Res. 13, 2476 (1998).CrossRefGoogle Scholar
17Zellama, K., Chahed, L., Sládek, P., Thèye, M.L., von Barbeleben, J.H. and Cabarrocas, P. Roca i: Hydrogen-effusion-induced structural changes and defects in a-Si:H films: Dependence upon the film microstructure. Phys. Rev. B 53, 3804 (1996).CrossRefGoogle ScholarPubMed
18Farjas, J., Das, D., Fort, J., Roura, P. and Bertran, E.: Calorimetry of hydrogen desorption from a-Si nanoparticles. Phys. Rev. B 65, 115403 (2002).CrossRefGoogle Scholar
19Lebib, S. and Cabarrocas, P. Roca i: Effects of ion energy on the crystal size and hydrogen bonding in plasma-deposited nanocrystalline silicon thin films. J. Appl. Phys. 97, 104334 (2005).CrossRefGoogle Scholar
20Cabarrocas, P. Roca i, Hamma, S., Sharma, S.N., Viera, G., Bertran, E. and Costa, J.: Nanoparticle formation in low-pressure silane plasmas: Bridging the gap between a-Si:H and microcrystalline Si films. J. Non-Cryst. Solids 227–230, 871 (1998).CrossRefGoogle Scholar
21Allan, D.C., Joannopoulos, J.D. and Pollard, W.B.: Electronic states and total energies in hydrogenated amorphous-silicon. Phys. Rev. B 25, 1065 (1982).CrossRefGoogle Scholar
22van der Walle, C.G.: Energies of various configurations of hydrogen in silicon. Phys. Rev. B 49, 4579 (1994).CrossRefGoogle Scholar
23CRC Handbook of Chemistry and Physics, 81st ed. (CRC Press, Boca Raton, FL, 2001).Google Scholar
24Battezzati, L., Demichelis, F., Pirri, C.F. and Tresso, L.: Effects of temperature on structural-properties of hydrogenated amorphous silicon-germanium and carbon-silicon-germanium alloys. J. Appl. Phys. 69, 2029 (1991).CrossRefGoogle Scholar
25Veneri, P. Delli, Privato, C. and Terzini, E.: Changes of hydrogen evolution thermodynamics induced by He and H-2 dilution in PECVD a-Si:H films: Influence on thermal crystallization. J. Non-Cryst. Solids 266–269, 635 (2000).CrossRefGoogle Scholar
26Battezzati, L., Demichelis, F., Pirri, C.F., Tagliaferro, A. and Tresso, E.: Investigation on structural-changes in amorphous tetrahedral alloys by means of differential scanning calorimetry. J. Non-Cryst. Solids 137–138, 87 (1991).CrossRefGoogle Scholar
27Lee, S.M., Jones, S.J., Li, Y-M., Turner, W.A. and Paul, W.: Comparison of the structural-properties of a-Si-H prepared from SiH4 and SiH4 + H2 plasmas, and correlation of the structure with the photoelectronic properties. Philos. Mag. B 60, 547 (1989).CrossRefGoogle Scholar
28Fontcuberta, A., Morral, I., Cabarrocas, P. Roca i and Clerc, C.: Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements. Phys. Rev. B 69, 125307 (2004).CrossRefGoogle Scholar
29Farjas, J., Chandana, P., Roura, R. and Cabarrocas, P. Roca i: Crystallization kinetics of hydrogenated amorphous silicon thick films grown by plasma-enhanced chemical vapour deposition. Appl. Surf. Sci. 238, 165 (2004).CrossRefGoogle Scholar
30Spinella, C., Lombardo, S. and Priolo, F.: Crystal grain nucleation in amorphous silicon. J. Appl. Phys. 84, 5383 (1998).CrossRefGoogle Scholar