Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T14:31:12.314Z Has data issue: false hasContentIssue false

Thermal expansion of the new perovskite substrates DyScO3 and GdScO3

Published online by Cambridge University Press:  01 April 2005

M.D. Biegalski*
Affiliation:
Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802
J.H. Haeni
Affiliation:
Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802
S. Trolier-McKinstry
Affiliation:
Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802
D.G. Schlom
Affiliation:
Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802
C.D. Brandle
Affiliation:
Agere Systems, Murray Hill, New Jersey 07974
A.J. Ven Graitis
Affiliation:
Agere Systems, Murray Hill, New Jersey 07974
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The thermal expansion coefficients of DyScO3 and GdScO3 were determined from298 to 1273 K using x-ray diffraction. The average thermal expansion coefficients of DyScO3 and GdScO3 were 8.4 and 10.9 ppm/K, respectively. No phase transitions were detected over this range, though the orthorhombicity decreased with increasing temperature. These thermal expansion coefficients are similar to other oxide perovskites (e.g., BaTiO3 or SrTiO3), making these rare-earth scandates promising substrates for the growth of epitaxial thin films of many oxide perovskites that have similar lattice spacing and thermal expansion coefficients.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

Currently at CrysTex Inc., Basking Ridge, New Jersey.

c)

Currently at Integrated Photonics, Inc., Hillsborough, New Jersey.

References

REFERENCES

1. Schubert, J., Trithaveesak, O., Petraru, A., Jia, C.L., Uecker, R., Reiche, P. and Schlom, D.G.: Structural and optical properties of epitaxial BaTiO3 thin films grown on GdScO3 (110). Appl. Phys. Lett. 82, 3460 (2003).CrossRefGoogle Scholar
2. Karimoto, S-I. and Naito, M.: Electron-doped infinite-layer thin films with TC over 40 K grown on DyScO3 substrates. Appl. Phys. Lett. 84, 2136 (2004).CrossRefGoogle Scholar
3. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, edited by Hellwege, K-H. and Hellwege, A.M. (Springer-Verlag, Berlin, 1976), New Series, Group III, Vol. 7, pp. 1113.Google Scholar
4. Badie, J.M.: Analysis of the structure of high temperature phases in the Sc2O3-La2O3 and Sc2O3–Nd2O3 systems. High Temp. High Press. 2, 309 (1970).Google Scholar
5. Amanyan, S.N., Antipov, E.V., Antonov, V.A., Arsen’ev, P.A., Bagdasarov, Kh.S., Kevorkov, A.M., Kovba, L.M. and Rakhmatuli, A.V.: Synthesis and structure of GdScO3 . Russ. J. Inorg. Chem. 32, 1225 (1987).Google Scholar
6. Space Group Symmetry, International Tables for Crystallography, Vol. A, 5th ed., edited by Hahn, T. (Kluwer, Dordrecht, The Netherlands, 2002), p. 66.Google Scholar
7. Megaw, H.D.: Crystal Structures: A Working Approach (Tech Books, Fairfax, 1973), pp. 174, 298–301, 467–469.Google Scholar
8. Eom, C.B., Cava, R.J., Fleming, R.M., Phillips, J.M., van Dover, R.B., Marshall, J.H., Hsu, J.W.P., Krajewski, J.J., Peck, W.F. Jr.: Single-crystal epitaxial thin films of the isotropic metallic oxides Sr1−xCaxRuO3 . Science 258, 1766 (1992).CrossRefGoogle ScholarPubMed
9. Powder Diffraction File Card 27-220, Sets 27–28, edited by McClune, W.F., Mrose, M.E., Post, B., Weissmann, S., McMurdie, H.F., Evans, E., and Wong-Ng, W. (International Centre for Diffraction Data, Swarthmore, PA, 1986), p. 78.Google Scholar
10. Powder Diffraction File Card 27-204, Sets 27 to 28, edited by McClune, W.F., Mrose, M.E., Post, B., Weissmann, S., McMurdie, H.F., Evans, E., and Wong-Ng, W. (International Centre for Diffraction Data, Swarthmore, PA, 1986), p. 72.Google Scholar
11. Chakoumakos, B.C., Nagler, S.E., Misture, S.T. and Christen, H.M.: High-temperature structural behavior of SrRuO3 . Physica B 241, 358 (1998).Google Scholar
12. Taylor, D.: Thermal expansion data VIII. Complex oxides, ABO3, the perovskites Trans. J. Br. Ceram. Soc. 84, 181 (1985).Google Scholar
13. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, edited by Madelung, O., Schulz, M., and Weiss, H. (Springer, Berlin, Germany, 1982), New Series, Group III, Vol. 7b, p. 22.Google Scholar
14. Christen, H-M., Boatner, L.A., Budai, J.D., Chisholm, M.F., Gea, L.A., Norton, D.P., Gerber, C. and Urbanik, M.: Semiconducting epitaxial films of metastable SrRu0.5Sn0.5O3 grown by pulsed laser deposition. Appl. Phys. Lett. 70, 2147 (1997).CrossRefGoogle Scholar
15. Ovanesyan, K.L., Petrosyan, A.G., Shirinyan, G.O., Pedrini, C. and Zhang, L.: Single crystal growth and characterization of LaLuO3 . Opt. Mater. 10, 291 (1998).CrossRefGoogle Scholar
16. Schlom, D.G., Brandle, C.D., and Ven, A. Graitis (private communication).Google Scholar
17. Speck, J.S. and Pompe, W.: Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films 1. Theory. J. Appl. Phys. 76, 466 (1994).CrossRefGoogle Scholar
18. Foster, C.M., Pompe, W., Daykin, A.C. and Speck, J.S.: Relative coherency strain and phase transformation history in epitaxial ferroelectric thin films. J. Appl. Phys. 79, 1405 (1996).CrossRefGoogle Scholar
19. Romanov, A.E., Pompe, W. and Speck, J.S.: Theory of microstructure and mechanics of the...a1/a2/a1/a2...domain pattern in epitaxial ferroelectric and ferroelastic films. J. Appl. Phys. 79, 4037 (1996).CrossRefGoogle Scholar
20. Sato, H. and Naito, M.: Increase in the superconducting transition temperature by anisotropic strain effect in (001) La1.85Sr0.15CuO4 thin films on LaSrAlO4 substrates. Physica C 274, 221 (1997).CrossRefGoogle Scholar
21. Pertsev, N.A. and Zembilgotov, A.G.: Domain populations in epitaxial ferroelectric thin films: Theoretical calculations and comparison with experiment. J. Appl. Phys. 80, 6401 (1996).CrossRefGoogle Scholar
22. Bozovic, I., Logvenov, G., Belca, I., Narimbetov, B. and Sveklo, I.: Epitaxial strain and superconductivity in La2− x Sr x CuO4 thin films. Phys. Rev. Lett. 89, 107001 (2002).CrossRefGoogle Scholar
23. Gan, Q., Rao, R.A., Eom, C.B., Garrett, J.L. and Lee, M.: Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films. Appl. Phys. Lett. 72, 978 (1998).CrossRefGoogle Scholar
24. Abe, K., Yanase, N., Sano, K., Izuha, M., Fukushima, N. and Kawakubo, T.: Modification of ferroelectricity in heteroepitaxial (Ba,Sr)TiO3 films for non-volatile memory applications. Integr. Ferroelectr. 21, 197 (1998).CrossRefGoogle Scholar
25. Streiffer, S.K., Eastman, J.A., Fong, D.D., Thompson, C., Munkholm, A., Murty, M.V. Ramana, Auciello, O., Bai, G.R. and Stephenson, G.B.: Observation of nanoscale 180 degrees stripe domains in ferroelectric PbTiO3 thin films. Phys. Rev. Lett. 89, 067601 (2002).CrossRefGoogle ScholarPubMed
26. Li, Y.L., Hu, S.Y., Liu, Z.K. and Chen, L.Q.: Phase-field model of domain structures in ferroelectric thin films. Appl. Phys. Lett. 78, 3878 (2001).CrossRefGoogle Scholar
27. Li, Y.L., Hu, S.Y., Liu, Z.K. and Chen, L.Q.: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater. 50, 395 (2002).CrossRefGoogle Scholar
28. Li, Y.L., Choudhury, S., Liu, Z.K. and Chen, L.Q.: Effect of external mechanical constraints on the phase diagram of epitaxial PbZr1− x Ti x O3 thin films—Thermodynamic calculations and phase-field simulations. Appl. Phys. Lett. 83, 1608 (2003).CrossRefGoogle Scholar
29. Haeni, J.H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y.L., Choudhury, S., Tian, W., Hawley, M.E., Craigo, B., Tagantsev, A.K., Pan, X.Q., Streiffer, S.K., Chen, L.Q., Kirchoefer, S.W., Levy, J., and Schlom, D.G.: Room-temperature ferroelectricity in strained SrTiO3. (unpublished).Google Scholar
30. Nix, W.D. and Clemens, B.M.: Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films. J. Mater. Res. 14, 3467 (1999).10.1557/JMR.1999.0468CrossRefGoogle Scholar
31. Haeni, J.H., Lettieri, J., Biegalski, M., Trolier-McKinstry, S., Schlom, D.G., Lim, S-G., Jackson, T.N., Rosario, M.M., Freeouf, J.L., Uecker, R., Reiche, P., Graitis, A. Ven, Brandle, C.D., and Lucovsky, G.: Dielectric tensor and optical bandgap measurement of single crystals of the alternative gate oxide candidates ReScO3 (unpublished).Google Scholar
32. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, edited by Madelung, O., Schulz, M., and Weiss, H. (Springer, Berlin, Germany, 1982), New Series, Group III, Vol. 7b, p. 26.Google Scholar
33. Thermal Expansion of Nonmetallic Solids, Thermophysical Properties of Matter, Vol. 13, edited by Touloukian, Y.S., Kirby, R.K., Taylor, R.E., and Lee, T.Y.R. (Plenum, New York, 1977), p. 288.Google Scholar
34. Hill, R.J. and Jackson, I.: The thermal-expansion of ScAlO3—A silicate perovskite analog. Phys. Chem. Miner. 17, 89 (1990).CrossRefGoogle Scholar
35. Glazer, A.M.: Classification of tilted octahedra in perovskites. Acta Crystallogr. Sec. B 28, 3384 (1972).CrossRefGoogle Scholar
36. Megaw, H.D.: Crystal structures and thermal expansion. Mater. Res. Bull. 6, 1007 (1971).CrossRefGoogle Scholar
37. Zhao, Y. and Weidner, D.J.: Thermal-expansion of SrZrO3 and BaZrO3 perovskites. Phys. Chem. Miner. 18, 294 (1991).CrossRefGoogle Scholar
38. Sasaura, M., Miyazawa, S. and Mukaida, M.: Thermal-expansion coefficients of high-TC superconductor substrate NdGaO3 single crystal. J. Appl. Phys. 68, 3643 (1990).CrossRefGoogle Scholar
39. Ovanesyan, K.L., Petrosyan, A.G., Shirinyan, G.O., Pedrini, C. and Zhang, L.: Czochralski single crystal growth of Ce- and Pr-doped LaLuO3 double oxide. J. Cryst. Growth 198/199, 497 (1999).CrossRefGoogle Scholar
40. Hazen, R.M. and Finger, L.W.: Comparative Crystal Chemistry: Temperature, Pressure: Composition and the Variation of Crystal Structure (Wiley, New York, 1982), pp. 115164.Google Scholar
41. Liu, X., Wang, Y. and Liebermann, R.C.: Orthorhombic–tetragonal phase transition in CaGeO3 perovskite at high temperature. Geophys. Res. Lett. 15, 1231 (1988).CrossRefGoogle Scholar
42. Yamanaka, T., Liebermann, R.C. and Prewitt, C.T.: Thermal-expansion of alumnus perovskite ScAlO3 . J. Mineral. Petro. Sci. 95, 182 (2000).CrossRefGoogle Scholar
43. Shannon, R.D. and Prewitt, C.T.: Effective ionic radii in oxides and fluorides. Acta Crystallogr. B25, 925 (1969).CrossRefGoogle Scholar
44. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
45. Henry, J.L. and Thompson, G.G.: Thermal expansion match between molybdenum (TZM alloy) and oxides of the perovskite and spinel types. Ceram. Bull. 55, 281 (1976).Google Scholar