Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T16:56:58.355Z Has data issue: false hasContentIssue false

Synthesis of poly-2-hydroxyethyl methacrylate–montmorillonite nanocomposite via in situ atom transfer radical polymerization

Published online by Cambridge University Press:  31 January 2011

Ayhan Oral*
Affiliation:
Department of Chemistry, Faculty of Arts and Science, Çanakkale Onsekiz Mart University, Çanakkale-17100, Turkey; and Department of Chemistry, Faculty of Science, Ege University, İzmir-Turkey
Talal Shahwan
Affiliation:
Department of Chemistry, İzmir Institute of Technology, 35430 Urla, İzmir-Turkey
Çetin Güler
Affiliation:
Department of Chemistry, Faculty of Science, Ege University, İzmir-Turkey
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The poly-2-hyroxyethyl methacrylate (PHEMA)/clay nanocomposite was synthesized by in situ atom transfer radical polymerization (ATRP) from initiator moieties immobilized within the silicate galleries of the clay particles. To produce organically modified montmorillonite (MMT) that has ATRP initiator moiety, a new catalyst that consists of quaternary ammonium salt moiety and an initiator moiety was synthesized. This initiator was intercalated into the interlayer spacing of the MMT. The polymerization reaction was carried out in a mixed solvent system consisting of methyl ethyl ketone and 1-propanol at 50 °C, using the initiator that has been already synthesized with a copper bromide catalyst. The 2, 2′-bipyridyl (bpy) complex was used as ligand. The products were characterized via Fourier transform infrared, nuclear magnetic resonance (1H NMR, 12C NMR), transmission electron microscopy, x-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Messersmith, P.B., Stupp, S.I.: Synthesis of nanocomposites—Organoceramics. J. Mater. Res. 7, 259 1992CrossRefGoogle Scholar
2Okada, A., Usuki, A.: The chemistry of polymer-clay hybrids. Mater. Sci. Eng., C 3, 109 1995CrossRefGoogle Scholar
3Giannelis, E.P.: Polymer layered silicate nanocomposites. Adv. Mater. 8, 29 1996CrossRefGoogle Scholar
4Polymer-Clay Nanocomposites edited by Wiley New York 2000Google Scholar
5Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng., R 28, 1 2000CrossRefGoogle Scholar
6Zanetti, M., Lomakin, S., Camino, G.: Polymer layered silicate nanocomposites. Macromol. Mater. Eng. 279, 1 20003.0.CO;2-Q>CrossRefGoogle Scholar
7Biswas, M., Ray, S.S.: Recent progress in synthesis and evaluation of polymer–montmorillonite nanocomposites. Adv. Polym. Sci. 155, 167 2001CrossRefGoogle Scholar
8Zhu, J., Morgan, A.B., Lamelas, F.J., Wilkie, C.A.: Fire properties of polystyrene–clay nanocomposites. Chem. Mater. 13, 3774 2001CrossRefGoogle Scholar
9Messersmith, P.B., Giannelis, E.P.: Synthesis and barrier properties of poly(e-caprolactone)-layered silicate nanocomposites. J. Polym. Sci., Part A: Polym. Chem 33, 1047 1995CrossRefGoogle Scholar
10Wang, M.S., Pinnavaia, T.J.: Clay–polymer nanocomposites formed from acidic derivatives of montmorillonite and an epoxy resin. Chem. Mater. 6, 468 1994CrossRefGoogle Scholar
11Fischer, H.R., Gielgens, L.H., Koster, T.P.M.: Nanocomposites from polymers and layered materials. Acta Polym. 50, 122 19993.0.CO;2-X>CrossRefGoogle Scholar
12Zeng, C., Lee, L.J.: Poly(methyl meacrylate) and polystyrene/clay nanocomposites prepared by in-situ polymerization. Macromolecules 34, 4098 2001CrossRefGoogle Scholar
13Huang, X., Brittain, W.: Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization. Macromolecules 34, 3255 2001CrossRefGoogle Scholar
14Wang, D.Y., Zhu, J., Yao, Q., Wilkie, C.A.: A comparison of various methods for the preparation of polystyrene and poly(methyl methacrylate) clay nanocomposites. Chem. Mater. 14, 3837 2002CrossRefGoogle Scholar
15Pinnavaia, T.J.: Intercalated clay catalysts. Science 220, 365 1983CrossRefGoogle ScholarPubMed
16Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng., R 28, 1 2000CrossRefGoogle Scholar
17Carrado, K.A., Xu, L.Q.: In-situ synthesis of polymer ± clay nanocomposites from silicate gels. Chem. Mater. 10, 1440 1998CrossRefGoogle Scholar
18Giannelis, E.P.: Polymer layered silicate nanocomposites. Adv. Mater. 8, 29 1996CrossRefGoogle Scholar
19Messersmith, P.B., Giannelis, E.P.: Synthesis and barrier properties of poly(e-caprolactone)-layered silicate nanocomposites. J. Polym. Sci., Part A: Polym. Chem. 33, 1047 1995CrossRefGoogle Scholar
20Rossi, G.B., Beaucage, G., Dang, T.D., Vaia, R.A.: Bottom-up synthesis of polymer nanocomposites and molecular composites: Ionic exchange with PMMA latex. Nano Lett. 2, 319 2002CrossRefGoogle Scholar
21Weimer, M.W., Chen, H., Giannelis, E.P., Sogah, D.Y.: Direct synthesis of dispersed nanocomposites by in situ living free radical polymerization using a silicate-anchored initiator. J. Am. Chem. Soc. 121, 1615 1999CrossRefGoogle Scholar
22Böttcher, H., Hallensleben, M.L., Nuss, S., Wurm, H., Bauer, J., Behrens, P.: Organic/inorganic hybrids by ‘living’/controlled ATRP grafting from layered silicates. J. Mater. Chem. 12, 1351 2002CrossRefGoogle Scholar
23Su, S., Wilkie, C.A.: Exfoliated poly(methyl methacrylate) and polystyrene nanocomposites occur when the clay cation contains a vinyl monomer. J. Polym. Sci., Part A: Polym. Chem. 41, 1124 2003CrossRefGoogle Scholar
24Tong, X., Zhao, H., Tang, T., Feng, Z., Huang, B.: Preparation and characterization of poly(ethyl acrylate)/bentonite nanocomposites by in situ emulsion polymerization. J. Polym. Sci., Part A: Polym. Chem. 40, 1706 2002CrossRefGoogle Scholar
25Zhu, J., Start, P., Mauritz, K.A., Wilkie, C.A.: Silicon-methoxide-modified clays and their polystyrene nanocomposites. J. Polym. Sci., Part A: Polym. Chem. 40, 1498 2002CrossRefGoogle Scholar
26Zhou, Q., Fan, X., Xia, C., Mays, J., Advincula, R.: Living anionic surface initiated polymerization (SIP) of styrene from clay surfaces. Chem. Mater. 13, 2465 2001CrossRefGoogle Scholar
27Beers, K.L., Boo, S., Gaynor, S.G., Matyjaszewski, K.: Atom transfer radical polymerization of 2-hydroxyethyl methacrylate. Macromolecules 32, 5772 1999CrossRefGoogle Scholar
28Sonmez, H.B., Senkal, B.F., Sherrington, D.C., Bicak, N.: Atom transfer radical graft polymerization of acrylamide from N-chlorosulfonamidated polystyrene resin, and use of the resin in selective mercury removal. React. Funct. Polym. 55, 1 2003CrossRefGoogle Scholar
29Yamaoka, K., Sasai, R., Takata, N.: Electric linear dichroism. A powerful method for the ionic chromophore–colloid system as exemplified by dye and montmorillonite suspensions. Colloids Surf., A 175, 23 2000CrossRefGoogle Scholar
30Shackelford, C.D., Benson, C.H., Katsumi, T., Edil, T.B., Lin, L.: Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotext. Geomembr. 18, 136 2000CrossRefGoogle Scholar
31Ray, S.S., Okamoto, M.: Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28, 1550 2003Google Scholar
32Ray, S.S., Okamoto, K., Okamoto, M.: Structure–property relationship in biodegradable poly(butylene succinate)/layered silicate nanocomposites. Macromolecules 36, 2355 2003Google Scholar
33Becker, C., Mueller, P., Schmidt, H.: Optical and thermomechanical investigations on thermoplastic nanocomposites with surface-modified silica nanoparticles. SPIE 88, 3469 1998Google Scholar
34Ajayan, P.M., Schadler, L.S., Braun, P.V.: Nanocomposite Science and Technology (Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, Germany, 2003 96CrossRefGoogle Scholar
35Demirelli, K., Coşkun, M., Kaya, E.: A detailed study of thermal degradation of poly(2-hydroxyethyl methacrylate). Polym. Degrad. Stab. 72, 75 2001CrossRefGoogle Scholar
36Ozawa, T.: A new method of analysing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 881 1965CrossRefGoogle Scholar
37Ray, S.S., Okamoto, M.: Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28, 1605 2003Google Scholar
38Beyer, G.: Nanocomposites: A new class of flame retardants for polymers. Plast. Additives & Compound. 4(10), 26 2002Google Scholar
39Ray, S.S., Okamoto, M.: Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28, 1607 2003Google Scholar
40Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28, 52 2000CrossRefGoogle Scholar
41Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28, 55 2000CrossRefGoogle Scholar
42Ajayan, P.M., Schadler, L.S., Braun, P.V.: Nanocomposite Science and Technology (Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, Germany, 2003 136CrossRefGoogle Scholar