Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T20:22:42.664Z Has data issue: false hasContentIssue false

Synthesis of Cu47Ti34Zr11Ni8 Bulk Metallic Glass by Warm Extrusion of Gas Atomized Powders

Published online by Cambridge University Press:  31 January 2011

D.J. Sordelet
Affiliation:
Ames Laboratory, Department of Materials Science and Engineering, and Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50014
E. Rozhkova
Affiliation:
Ames Laboratory, Iowa State University, Ames, Iowa 50014
P. Huang
Affiliation:
Ames Laboratory, Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50014
P.B. Wheelock
Affiliation:
Ames Laboratory, Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50014
M.F. Besser
Affiliation:
Ames Laboratory, Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50014
M.J. Kramer
Affiliation:
Ames Laboratory, Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50014
M. Calvo-Dahlborg
Affiliation:
LSG2M-UMRT7584, Ecole des Mines, 54042 Nancy Cedex, France
U. Dahlborg
Affiliation:
LSG2M-UMRT7584, Ecole des Mines, 54042 Nancy Cedex, France
Get access

Abstract

Cu47Ti34Zr11Ni8 amorphous gas atomized powders were consolidated by warm extrusion. After consolidation near 723 K using an extrusion ratio of 5, the material retains between 88% and 98% of the amorphous structure found in the gas atomized powder. The onsets of the glass transition and crystallization temperatures of this extruded material are observed respectively at slightly higher and lower temperatures than those of the starting powders. These temperature shifts are attributed to a composition change in the remaining amorphous phase during partial devitrification throughout the extrusion process. Powders extruded at the same temperature, but using higher extrusion ratios of 9 and 13, exhibit substantial devitrification during the consolidation process yet still deform homogeneously.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Johnson, W.L., MRS Bull. 24(10), 42 (1999).CrossRefGoogle Scholar
Inone, A., Zhang, T., and Masumoto, T., Mater. Trans. JIM 31, 425 (1990).CrossRefGoogle Scholar
Zhang, T., Inoue, A., and Masumoto, T., Mater. Trans. JIM 32, 1005 (1991).CrossRefGoogle Scholar
Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
Lin, X.H. and Johnson, W.L., J. Appl. Phys. 78, 6514 (1995).CrossRefGoogle Scholar
Lin, X.H., Ph.D. Thesis, California Institute of Technology (1997).Google Scholar
Nagel, S.R. and Tauc, J., Phys. Rev. Lett. 35, 380 (1975).CrossRefGoogle Scholar
Inoue, A., Nakamura, T., Nishiyama, N., and Masumoto, T., Mater. Trans. JIM 33, 937 (1992).CrossRefGoogle Scholar
Cline, C.F. and Hopper, R.W., Scr. Metall. 11, 1137 (1977).CrossRefGoogle Scholar
Hasegawa, R. and Cline, C.F., in Rapidly Quenched Metals, vol. II, edited by Steeb, S. and Warlimont, H. (Elsevier Science Publishers B.V., New York, 1985), Vol. II, p. 1667.Google Scholar
Takagi, M., Kawamura, Y., Araki, M., Kuroyama, Y., and Imura, T., Mater. Sci. Eng. 98, 457 (1988).CrossRefGoogle Scholar
Morris, D.G., J. Mater. Sci. 17, 1789 (1982).CrossRefGoogle Scholar
Morris, D.G., in Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H. (Elsevier Science Publishers B.V., New York, 1985), Vol. II, p. 1751.Google Scholar
Kawamura, Y., Takagi, M., Senoo, M., and Imura, T., Mater. Sci. Eng. 98, 415 (1988).CrossRefGoogle Scholar
Hasegawa, R., Chang, C.F., and Hathaway, R.E., J. Appl. Phys. 57, 3566 (1985).CrossRefGoogle Scholar
Ponyatovsky, E.G., Belash, I.T., and Barkalov, O.I., J. Non-Cryst. Solids 117/118, 679 (1990).CrossRefGoogle Scholar
Seidel, A., Ecket, J., Baecher, I., Reibold, M., and Schultz, L., Acta, Mater. 48, 3657 (2000).CrossRefGoogle Scholar
Liu, X.D., Nagumo, M., and Umemoto, M., Mater. Trans. JIM 39, 343 (1998).CrossRefGoogle Scholar
Kawamura, Y., Inoue, A., and Masumoto, T., Scr. Metall. 29, 25 (1993).CrossRefGoogle Scholar
Kawamura, Y., Inoue, A., and Masumoto, T., J. Jpn. Inst. Met. 57, 804 (1993).CrossRefGoogle Scholar
Kawamura, Y., Kato, H., Inoue, A., and Masumoto, T., Int. J. Powd. Metall. 33, 50 (1997).Google Scholar
Kim, Y.J., Busch, R., and Johnson, W.L., Appl. Phys. Lett. 65, 2136 (1994).CrossRefGoogle Scholar
Wang, W. and Bai, H.Y., Appl. Phys. Lett. 71, 58 (1997).CrossRefGoogle Scholar
Yim, H.C., Busch, R., and Johson, W.L., J. Appl. Phys. 83, 4134 (1998).Google Scholar
Busch, R. and Johnson, W.L., Mater. Sci. Forum 269, 577 (1998).CrossRefGoogle Scholar
Waniuk, T.A., Busch, R., and Johnson, W.L., Acta Mater. 46, 5229 (1998).CrossRefGoogle Scholar
Busch, R. and Johnson, W.L., Appl. Phys. Lett. 72, 2695 (1998).CrossRefGoogle Scholar
Sordelet, D.J., Kramer, M.J., Besser, M.F., and Rozhkova, E., J. Non-Cryst. Solids 290, 163 (2001).CrossRefGoogle Scholar
Glade, S., Loeffler, J.F., Bossuyt, S., Johnson, W.L. and Miller, M.K., J. Appl. Phys. 89, 1573 (2001).CrossRefGoogle Scholar
Sordelet, D.J., Huang, P., Besser, M.F., and Rozhkova, E., in Thermal Spray: Surface Engineering via Applied Research, edited by Berndt, C.C. (ASM International, Materials Park, OH, 2000), 851.Google Scholar