Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T22:27:40.284Z Has data issue: false hasContentIssue false

Synthesis, morphology, and magnetic properties of NiCo/carbon nanocomposites

Published online by Cambridge University Press:  17 November 2011

Meihua Xu
Affiliation:
Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, People's Republic of China; Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093, People's Republic of China; and Department of Applied Physics, Nanjing University of Technology, Nanjing 210009, People's Republic of China
Wei Zhong*
Affiliation:
Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, People's Republic of China; and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093, People's Republic of China
Chaktong Au
Affiliation:
Chemistry Department, Hong Kong Baptist University, Hong Kong, People’s Republic of China
Liya Lv
Affiliation:
Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, People's Republic of China; and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093, People's Republic of China
Youwei Du
Affiliation:
Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, People's Republic of China; and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Depending on the Ni:Co molar ratio, composites of NiCo/carbon nanorods and NiCo/carbon nanotubes can be synthesized through catalytic decomposition of benzene at 500 °C over NiCo nanoparticles derived from sol–gel synthesis followed by hydrogen reduction. According to x-ray diffraction results, the average grain size of NiCo31 is 11.2 nm, whereas that of NiCo13 and NiCo22 is 24.9 nm. Field-emission scanning electron microscopic and high-resolution transmission electron microscopic images reveal that over NiCo13 and NiCo22, the carbon nanomaterials are mainly in the form of nanorods, whereas over NiCo31, they are in the form of nanotubes. The composites of carbon and NiCo alloy are highly stable in air and show soft magnetic property and almost equal coercivity. It is observed that the saturation magnetization is affected by the composition of NiCo alloy.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C.: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003).CrossRefGoogle Scholar
2.Bautista, M.C., Bomati-Miguel, O., Zhao, X., Morales, M.P., González-Carreño, T., Pérez de Alejo, R., Ruiz-Cabello, J., and Veintemillas-Verdaguer, S.: Comparative study of ferrofluids based on dextran-coated iron oxide and metal nanoparticles for contrast agents in magnetic resonance imaging. Nanotechnology 15, S154 (2004).CrossRefGoogle Scholar
3.Sun, S., Murray, C.B., Weller, D., Folks, L., and Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989 (2000).CrossRefGoogle ScholarPubMed
4.Goll, D. and Kronmuller, H.: High-performance permanent magnets. Naturwissenschaften 87, 423 (2000).CrossRefGoogle ScholarPubMed
5.Paduani, C.: Magnetic properties of Fe-Rh alloys. J. Appl. Phys. 90, 6251 (2001).CrossRefGoogle Scholar
6.Roucoux, A., Schulz, J., and Patin, H.: Reduced transition metal colloids: A novel family of reusable catalysts. Chem. Rev. 102, 3757 (2002).CrossRefGoogle ScholarPubMed
7.Casado-Rivera, E., Gál, Z., Angelo, A.C.D., Lind, C., DiSalvo, F.J., and Abruña, H.D.: Electrocatalytic oxidation of formic acid at an ordered intermetallic PtBi surface. ChemPhysChem 4, 193 (2003).CrossRefGoogle ScholarPubMed
8.Casado-Rivera, E., Volpe, D.J., Alden, L., Lind, C., Downie, C., Vazquez-Alvarez, T., Angelo, A.C.D., DiSalvo, F.J., and Abruna, H.D.: Electrocatalytic activity of ordered intermetallic phases for fuel-cell applications. J. Am. Chem. Soc. 126, 4043 (2004).CrossRefGoogle ScholarPubMed
9.Zhang, C.J., Baxter, R.J., Hu, P., Alavi, A., and Lee, M-H.: A density-functional theory study of carbon monoxide oxidation on the Cu3Pt(111) alloy surface: Comparison with the reactions on Pt(111) and Cu(111). J. Chem. Phys. 115, 5272 (2001).CrossRefGoogle Scholar
10.Mathauser, A.T. and Teplyakov, A.V.: Naphthalene formation on Cu3Pt(111): Dehydrocyclization of 4-phenyl-1-butene. Catal. Lett. 73, 207 (2001).CrossRefGoogle Scholar
11.Kirchheim, R., Mutschele, T., Keininger, W., Gleiter, H., Birringer, R., and Koble, T.D.: Hydrogen in amorphous and nanocrystalline metals. Mater. Sci. Eng. 99, 457 (1988).CrossRefGoogle Scholar
12.Kamakoti, P. and Sholl, D.S.: A comparison of hydrogen diffusivities in Pd and CuPd alloys using density-functional theory. J. Membr. Sci. 225, 145 (2003).CrossRefGoogle Scholar
13.Menon, V.P. and Martin, C.R.: Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem. 67, 1920 (1995).CrossRefGoogle Scholar
14.Subramoney, S.: Novel nanocarbons-structure, properties, and potential applications. Adv. Mater. 10, 1157 (1998).3.0.CO;2-N>CrossRefGoogle Scholar
15.Wu, M.Z., Quan, G.Y., Liu, Y.M., Ma, Y.Q., Dai, P., and Zhang, L.D.: Comparative study of one-dimensional NiCo alloy nanostructure assembled by in situ and ex situ applied magnetic fields. Trans. Nonferrous Met. Soc. China 19, 1562 (2009).CrossRefGoogle Scholar
16.Wu, H.Q., Cao, P.P., Li, W.T., Ni, N., Zhu, L.L., and Zhang, X.J.: Microwave-assisted synthesis and magnetic properties of size-controlled CoNi/MWCNT nanocomposites. J. Alloy. Compd. 509, 1261 (2011).CrossRefGoogle Scholar
17.Wen, M., Wang, Y.F., Zhang, F., and Wu, Q.S.: Nanostructures of Ni and NiCo amorphous alloys synthesized by a double composite template approach. J. Phys. Chem. C 113, 5960 (2009).CrossRefGoogle Scholar
18.Toneguzzo, P., Viau, G., Acher, O., Guillet, F., Bruneton, E., Fievet-Vincent, F., and Fievet, F.: CoNi and FeCoNi fine particles prepared by the polyol process: Physico-chemical characterization and dynamic magnetic properties. J. Mater. Sci. 35, 3767 (2000).CrossRefGoogle Scholar
19.Galvez, N., Valero, E., Ceolin, M., Trasobares, S., Lopez-Haro, M., Calvino, J.J., and Domınguez-Vera, J.M.: A bioinspired approach to the synthesis of bimetallic CoNi nanoparticles. Inorg. Chem. 49, 1705 (2010).CrossRefGoogle Scholar
20.Elumalai, P., Vasan, H.N., Verelst, M., Lecante, P., Carles, V., and Tailhades, P.: Synthesis and characterization of sub-micron size Co-Ni alloys using malonate as precursor. Mater. Res. Bull. 37, 353 (2002).CrossRefGoogle Scholar
21.Pei, L.H., Mori, K., and Adachi, M.: Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization. Langmuir 20, 7837 (2004).CrossRefGoogle ScholarPubMed
22.Hao, E., Bailey, R.C., Schatz, G.C., Hupp, J.T., and Li, S.: Synthesis and optical properties of “branched” gold nanocrystals. Nano Lett. 4, 327 (2004).CrossRefGoogle Scholar
23.Ramaye, Y., Neveu, S., and Cabuil, V.: Ferrofluids from prism-like nanoparticles. J. Magn. Magn. Mater. 289, 28 (2005).CrossRefGoogle Scholar
24.Bdker, F., Mørup, S., and Linderoth, S.: Surface effects in metallic iron nanoparticles. Phys. Rev. Lett. 72, 282 (1994).CrossRefGoogle Scholar
25.Kuzumaki, T., Takamura, Y., Ichinose, H., and Horiike, Y.: Structural change at the carbon-nanotube tip by field emission. Appl. Phys. Lett. 78, 3699 (2001).CrossRefGoogle Scholar
26.Zhi, C.Y., Bai, X.D., and Wang, E.G.: Enhanced field emission from carbon nanotubes by hydrogen plasma treatment. Appl. Phys. Lett. 81, 1690 (2002).CrossRefGoogle Scholar
27.Chamber, A., Park, C., Baker, R.T.K., and Rodriquez, N.M.: Hydrogen storage in graphite nanofibers. J. Phys. Chem. B 102, 4253 (1998).CrossRefGoogle Scholar
28.Dahn, J.R., Zheng, T., Liu, Y.H., and Xue, J.S.: Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590 (1995).CrossRefGoogle Scholar
29.Terrones, H., López-Urías, F., Muñoz-Sandoval, E., Rodríguez-Manzo, J.A., Zamudio, A., Elías, A.L., and Terrones, M.: Magnetism in Fe-based and carbon nanostructures: Theory and applications. Solid State Sci. 8, 303 (2006).CrossRefGoogle Scholar
30.Liu, Z.J., Xu, Z., Yuan, Z.Y., Chen, W.X., Zhou, W.Z., and Peng, L.M.: A simple method for coating carbon nanotubes with Co-B amorphous alloy. Mater. Lett. 57, 1339 (2003).CrossRefGoogle Scholar
31.Wu, H.Q., Xu, D.M., Wang, Q., Wang, Q.Y., Su, G.Q., and Wei, X.W.: Composition-controlled synthesis, structure and magnetic properties of ternary FexCoyNi100-x-y alloys attached on carbon nanotubes. J. Alloy. Compd. 463, 78 (2008).CrossRefGoogle Scholar
32.Elías, A.L., Rodríguez-Manzo, J.A., McCartney, M.R., Golberg, D., Zamudio, A., Baltazar, S.E., López-Urías, F., Muñoz-Sandoval, E., Gu, L., Tang, C.C., Smith, D.J., Bando, Y., Terrones, H., and Terrones, M.: Production and characterization of single-crystal FeCo nanowires inside carbon nanotubes. Nano Lett. 5, 467 (2005).CrossRefGoogle ScholarPubMed
33.Steigerwalt, E.S., Deluga, G.A., and Lukehart, C.M.: Pt-Ru/carbon fiber nanocomposites: Synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance. J. Phys. Chem. B 106, 760 (2002).CrossRefGoogle Scholar
34.Che, G.L., Lakshmi, B.B., Martin, C.R., and Fisher, E.R.: Metal-nanocluster-filled carbon nanotubes: Catalytic properties and possible applications in electrochemical energy storage and production. Langmuir 15, 750 (1999).CrossRefGoogle Scholar
35.Wu, H.Y., Zhao, Y., and Jiao, Q.Z.: Nanotube arrays of Zn/Co/Fe composite oxides assembled in porous anodic alumina and their magnetic properties. J. Alloy. Compd. 487, 591 (2009).CrossRefGoogle Scholar
36.Che, R.C., Peng, L.M., Duan, X.F., Chen, Q., and Liang, X.L.: Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401 (2004).CrossRefGoogle Scholar
37.Lv, R.T., Kang, F.Y., Gu, J.L., Gui, X.C., Wei, J.Q., Wang, K.L., and Wu, D.H.: Carbon nanotubes filled with ferromagnetic alloy nanowires: Lightweight and wide-band microwave absorber. Appl. Phys. Lett. 93, 223105 (2008).CrossRefGoogle Scholar
38.Lv, R.T., Kang, F.Y., Zhu, D., Zhu, Y.Q., Gui, X.C., Wei, J.Q., Gu, J.L., Li, D.J., Wang, K.L., and Wu, D.H.: Enhanced field emission of open-ended, thin-walled carbon nanotubes filled with ferromagnetic nanowires. Carbon 47, 2709 (2009).CrossRefGoogle Scholar
39.Winkler, A., Muhl, T., Menzel, S., Kozhuharova-Koseva, R., Hampel, S., Leonhardt, A., and Büchner, B.: Magnetic force microscopy sensors using iron-filled carbon nanotubes. J. Appl. Phys. 99, 104905 (2006).CrossRefGoogle Scholar
40.Mönch, I., Meye, A., Leonhardt, A., Krämer, K., Kozhuharova, R., Gemming, T., Wirth, M.P., and Büchner, B.: Ferromagnetic filled carbon nanotubes and nanoparticles: Synthesis and lipid-mediated delivery into human tumor cells. J. Magn. Magn. Mater. 290, 276 (2005).CrossRefGoogle Scholar
41.Korneva, G., Ye, H.H., Gogotsi, Y., Halverson, D., Friedman, G., Bradley, J.C., and Kornev, K.G.: Carbon nanotubes loaded with magnetic particles. Nano Lett. 5, 879 (2005).CrossRefGoogle ScholarPubMed
42.Grobert, N., Mayne, M., Terrones, M., Sloan, J., Dunin-Borkwski, R.E., Kamalakaran, R., Seeger, T., Terrones, H., Rühle, N., Walton, D.M.R., Kroto, H.W., and Hutchison, J.L.: Alloy nanowires: Invar inside carbon nanotubes. Chem. Commun. 471 (2001).CrossRefGoogle Scholar
43.Terrones, M., Grobert, N., Hsu, W.K., Zhu, Y.Q., Hu, W.B., Terrones, H., Hare, J.P., Kroto, H.W., and Walton, D.R.M.: Advances in the creation of filled nanotubes and novel nanowires. MRS Bull. 24, 43 (1999).CrossRefGoogle Scholar
44.Sloan, J., Wright, D.M., Woo, H.G., Brown, S., York, A.P.E., Coleman, K.S., Hutchison, J.L., and Green, M.L.H.: Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem. Commun. 699 (1999).CrossRefGoogle Scholar
45.Suda, Y., Tanaka, A., Okita, A., Sakai, Y., and Sugawara, H.: Growth of carbon nanofibers on metal-catalyzed substrates by pulsed laser ablation of graphite. J. Phys. Conf. Ser. 59, 348 (2007).CrossRefGoogle Scholar
46.Gorbunov, A., Just, O., Pompe, W., and Graff, A.: Role of catalyst particle size in the synthesis of single-wall carbon nanotubes. Appl. Surf. Sci. 197198, 563 (2002).CrossRefGoogle Scholar
47.Xu, M.H., Qi, X.S., Zhong, W., Ye, X.J., Deng, Y., Au, C.T., Jin, C.Q., Yang, Z.X., and Du, Y.W.: Synthesis and properties of magnetic composites of carbon nanotubes/Fe nanoparticle. Chin. Phys. Lett. 26, 116103 (2009).Google Scholar
48.Feng, S.A., Zhao, J.H., Du, G.X., Song, C., Song, J.L., and Zhu, Z.P.: Carbon nanotube-confined evolution of Co–Ni alloy nanowires with high-density lamellar twin boundaries. J. Phys. Chem. C 112, 15247 (2008).CrossRefGoogle Scholar
49.Xu, M.H., Zhong, W., Qi, X.S., Au, C.T., Deng, Y., and Du, Y.W.: Highly stable Fe–Ni alloy nanoparticles encapsulated in carbon nanotubes: Synthesis, structure and magnetic properties. J. Alloy. Compd. 495, 200 (2010).CrossRefGoogle Scholar
50.Merkulov, V.I., Melechko, A.V., Guillorn, M.A., Lowndes, D.H., and Simpson, M.L.: Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition. Appl. Phys. Lett. 79, 2970 (2001).CrossRefGoogle Scholar
51.Fan, S.S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., and Dai, H.: Self-oriented regular arrays of carbon nanotubes and their field-emission properties. Science 283, 512 (1999).CrossRefGoogle ScholarPubMed
52.Amelinckx, S., Zhang, X.B., Bernaerts, D., Zhang, X.F., Ivanov, V., and Nagy, J.B.: A structure model and growth-mechanism for multishell carbon nanotubes. Science 267, 1334 (1995).CrossRefGoogle ScholarPubMed
53.Song, I.K., Cho, Y.S., Choi, G.S., Park, J.B., and Kim, D.J.: The growth mode change in carbon nanotube synthesis in plasma-enhanced chemical vapor deposition. Diam. Relat. Mater. 13, 1210 (2004).CrossRefGoogle Scholar
54.Bower, C., Zhou, O., Zhu, W., Werder, D.J., and Jin, S.: Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 77, 2767 (2000).CrossRefGoogle Scholar
55.Gohier, A., Ewels, C.P., Minea, T.M., and Djouadi, M.A.: Carbon nanotube growth mechanism switches from tip- to base-growth with decreasing catalyst particle size. Carbon 46, 1331 (2008).CrossRefGoogle Scholar
56.Du, G.X., Feng, S.A., Zhao, J.H., Song, C., Bai, S.L., and Zhu, Z.P.: Particle-wire-tube mechanism for carbon nanotube evolution. Am. Chem. Soc. 128, 15405 (2006).CrossRefGoogle ScholarPubMed
57.Wang, X.J., Lu, J., Xie, Y., Du, G.A., and Guo, Q.X.: A novel route to multiwalled carbon nanotubes and carbon nanorods at low temperature. J. Phys. Chem. B 106, 933 (2002).CrossRefGoogle Scholar
58.Gamaly, E.G. and Ebbesen, T.W.: Mechanism of carbon nanotube formation in the arc discharge. Phys. Rev. B 52, 2083 (1995).CrossRefGoogle ScholarPubMed
59.Zou, G.F., Lu, J., Wang, D.B., Xu, L.Q., and Qian, Y.T.: High-yield carbon nanorods obtained by a catalytic copyrolysis process. Inorg. Chem. 43, 5432 (2004).CrossRefGoogle ScholarPubMed
60.Rao, A.M., Richter, E., Bandow, S., Chase, B., Eklund, P.C., Williams, K.A., Fang, S., Subbaswamy, K.R., Menon, M., Thess, A., Smalley, R.E., Dresselhaus, G., and Dresselhaus, M.S.: Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275, 187 (1997).CrossRefGoogle ScholarPubMed
61.Li, W.Z., Zhang, H., Wang, C.Y., Zhang, Y., Xu, L.W., Zhu, K., and Xie, S.S.: Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor. Appl. Phys. Lett. 70, 2684 (1997).CrossRefGoogle Scholar
62.Ivanov, V., Fonseca, A., Nagy, J.B., Lucas, A., Lambin, P., Bernaerts, D., and Zhang, X.B.: Catalytic production and purification of nanotubules having fullerene-scale diameters. Carbon 33, 1727 (1995).CrossRefGoogle Scholar
63.Xie, S.S., Li, W.Z., Pan, Z.W., Chang, B.H., and Sun, L.F.: Carbon nanotube arrays. Eur. Phys. J. D 9, 85 (1999).CrossRefGoogle Scholar
64.Mahanandia, P., Vishwakarma, P.N., Nanda, K.K., Prasad, V., Barai, K., Mondal, A.K., Sarangi, S., Dey, G.K., and Subramanyam, S.V.: Synthesis of multi-wall carbon nanotubes by simple pyrolysis. Solid State Commun. 145, 143 (2008).CrossRefGoogle Scholar
65.Koster, G.F. and Slater, J.C.: Simplified impurity calculation. Phys. Rev. 96, 1208 (1954).CrossRefGoogle Scholar
66.Kanamori, J., Terakura, K., and Yamada, K.: Approximate expression of greens function for calculation of electronic structure in metals and alloys. Prog. Theor. Phys. 41, 1426 (1969).CrossRefGoogle Scholar