Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T17:47:18.110Z Has data issue: false hasContentIssue false

Synthesis, characterization, and photocatalytic properties of pyrochlore Bi2Ti2O7 nanotubes

Published online by Cambridge University Press:  03 March 2011

Hongjun Zhou
Affiliation:
Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400
Tae-Jin Park
Affiliation:
Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400
Stanislaus S. Wong*
Affiliation:
Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400; and Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973
*
a) Address all correspondence to this author. e-mail: [email protected] or [email protected]
Get access

Abstract

Bismuth titanate (Bi2Ti2O7) nanotubes were successfully synthesized with an alumina template-based sol-gel technique. As-synthesized nanotubes are smooth and uniform with diameters ranging from 180 to 330 nm and lengths varying from 7 to 12 μm. Extensive characterization of as-prepared samples has been performed using x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), energy-dispersive x-ray spectroscopy (EDS), and selected-area electron diffraction (SAED). Photocatalytic studies indicate that as-prepared nanotubes possess higher photocatalytic activity than the corresponding bulk sample prepared without the use of an alumina template.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Seshadri, R.: Lone pairs in insulating pyrochlores: Ice rules and high-k behavior. Solid State Sci. 8, 259 (2006).CrossRefGoogle Scholar
2.Hou, Y., Huang, Z., Xue, J., Wu, Y., Shen, X., Chu, J.: Study of the ferroelectricity in Bi2Ti2O7 by infrared spectroscopic ellipsometry. Appl. Phys. Lett. 86, 112905 (2005).CrossRefGoogle Scholar
3.Ronnow, H.M., Renner, C., Aeppli, G., Kimura, T., Tokura, Y.: Polarons and confinement of electronic motion to two dimensions in a layered manganite. Nature 440, 1025 (2006).CrossRefGoogle Scholar
4.Sleight, A.W.: Synthesis of high pressure Cd2V2O7 and related compositions. Mater. Res. Bull. 9, 1185 (1974).CrossRefGoogle Scholar
5.Longo, J.M., Donohue, P.C., Batson, D.A.: Significant solids. Oxides. Cadmium rhenium(V) oxide, Cd2Re2O7. Inorg. Synth. 14, 146 (1973).CrossRefGoogle Scholar
6.Wainer, E., Wentworth, C.: Niobate and tantalate dielectrics. J. Am. Ceram. Soc. 35, 207 (1952).CrossRefGoogle Scholar
7.Lee, S., Park, J-G., Adroja, D.T., Khomskil, D., Streltsov, S., McEwen, K.A., Sakai, H., Yoshimura, K., Anisimov, V.I., Mori, D., Kanno, R., Ibberson, R.: Spin gap in Tl2Ru2O7 and the possible formation of Haldane chains in three-dimensional crystals. Nat. Mater. 5, 471 (2006).CrossRefGoogle ScholarPubMed
8.Hwang, G.W., Kim, W.D., Min, Y-S., Cho, Y.J., Hwang, C.S.: Characteristics of amorphous Bi2Ti2O7 thin films grown by atomic layer deposition for memory capacitor applications. J. Electrochem. Soc. 153 F20(2006).CrossRefGoogle Scholar
9.Yang, X.N., Huang, B.B., Wang, H.B., Shang, S.X., Yao, W.F., Wei, J.Y.: Effect of La doping on structural and electrical properties of Bi2Ti2O7 thin films. J. Cryst. Growth 270, 98 (2004).CrossRefGoogle Scholar
10.Wang, S.W., Wang, H., Wu, X., Shang, S., Wang, M., Li, Z., Lu, W.: Rapid thermal processing of Bi2Ti2O7 thin films grown by chemical solution decomposition. J. Cryst. Growth 224, 323 (2001).CrossRefGoogle Scholar
11.Wu, X.M., Wang, S.W., Wang, H., Wang, Z., Shang, S.X., Wang, M.: Preparation and characterization of Bi2Ti2O7 thin films by chemical solution deposition technique. Thin Solid Films 370, 30 (2000).CrossRefGoogle Scholar
12.Wang, S.W., Wang, H., Shang, S.X., Huang, J., Wang, Z., Wang, M.: PZT thin films prepared by chemical solution decomposition using a Bi2Ti2O7 buffer layer. J. Cryst. Growth 217, 388 (2000).CrossRefGoogle Scholar
13.Wu, W., Fumoto, K., Oishi, Y., Okuyama, M., Hamakawa, Y.: Bismuth titanate thin films on Si with buffer layers prepared by laser ablation and their electrical properties. Jpn. J. Appl. Phys. 35, 1560 (1996).Google Scholar
14.Yao, W.F., Wang, H., Xu, X.H., Zhou, J.T., Yang, X.N., Zhang, Y., Shang, S.X.: Photocatalytic property of bismuth titanate, Bi2Ti2O7. Appl. Catal., A 259, 29 (2004).CrossRefGoogle Scholar
15.Armstrong, A.R., Armstrong, G., Canales, J., Bruce, P.G.: TiO2-B nanowires. Angew. Chem., Int. Ed. Engl. 43, 2286 (2004).CrossRefGoogle Scholar
16.Tian, Z.R., Voigt, J.A., Liu, J., McKenzie, B., Xu, H.: Large oriented arrays and continuous films of TiO2-based nanotubes. J. Am. Chem. Soc. 125, 12384 (2003).CrossRefGoogle Scholar
17.Zhu, H., Gao, X., Lan, Y., Song, D., Xi, Y., Zhao, J.: Hydrogen titanate nanofibers covered with anatase nanocrystals: A delicate structure achieved by the wet chemistry reaction of the titanate nanofibers. J. Am. Chem. Soc. 126, 8380 (2004).CrossRefGoogle ScholarPubMed
18.Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K.: Titania nanotubes prepared by chemical processing. Adv. Mater. 11, 1307 (1999).3.0.CO;2-H>CrossRefGoogle Scholar
19.Zhao, L., Steinhart, M., Yu, J., Gosele, U.: Lead titanate nano- and microtubes. J. Mater. Res. 21, 685 (2006).CrossRefGoogle Scholar
20.Peng, H., Li, G., Zhang, Z.: Synthesis of bundle-like structure of titania nanotubes. Mater. Lett. 59, 1142 (2005).CrossRefGoogle Scholar
21.Mao, Y., Banerjee, S., Wong, S.S.: Hydrothermal synthesis of perovskite nanotubes. Chem. Commun. 3, 408 (2003).CrossRefGoogle Scholar
22.Mao, Y., Kanungo, M., Hemraj-Benny, T., Wong, S.S.: Synthesis and growth mechanism of titanate and titania one-dimensional nanostructures self-assembled into hollow micrometer-scale spherical aggregates. J. Phys. Chem. B 110, 702 (2006).CrossRefGoogle ScholarPubMed
23.Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).CrossRefGoogle Scholar
24.Patzke, G.R., Krumeich, F., Nesper, R.: Oxidic nanotubes and nanorods-anisotropic modules for a future nanotechnology. Angew. Chem., Int. Ed. Engl. 41, 2446 (2002).3.0.CO;2-K>CrossRefGoogle ScholarPubMed
25.Lai, Y., Sun, L., Chen, Y., Zhuang, H., Lin, C., Chin, J.W.: Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity. J. Electrochem. Soc. 153 D123(2006).CrossRefGoogle Scholar
26.Mao, Y., Wong, S.S.: Size- and shape-dependent transformation of nanosized titanate into analogous titania nanostructures. J. Am. Chem. Soc. 128, 8217 (2006).CrossRefGoogle ScholarPubMed
27.Park, T-J., Mao, Y., Wong, S.S.: Synthesis and characterization of multiferroic BiFeO3 nanotubes. Chem. Commun. 2708(2004).CrossRefGoogle ScholarPubMed
28.Joshi, P.C., Mansingh, A.: Structural and optical properties of ferroelectric Bi4Ti3O12 thin films by sol-gel technique. Appl. Phys. Lett. 59, 2389 (1991).CrossRefGoogle Scholar
29.Gu, H., Dong, C., Chen, P., Bao, D., Kuang, A., Li, X.: Growth of layered perovskite Bi4Ti3O12 thin films by sol-gel process. J. Cryst. Growth 186, 403 (1998).CrossRefGoogle Scholar
30.Wang, Z., Yang, C.H., Sun, D.L., Hu, J.F., Wang, H., Chen, H.C., Fang, C.S.: Atomic force microscopic imaging and wet etching of Bi2Ti2O7 thin films. Mater. Sci. Eng., B 102, 335 (2003).CrossRefGoogle Scholar
31.Su, W-F., Lu, Y-T.: Synthesis, phase transformation, and dielectric properties of sol-gel derived Bi2Ti2O7 ceramics. Mater. Chem. Phys. 80, 632 (2003).CrossRefGoogle Scholar