Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-12T11:33:53.008Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Iron Oxide Nanostructured Particles in Na–Y Zeolite Matrix

Published online by Cambridge University Press:  03 March 2011

Maxine Yee
Affiliation:
Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
Iskandar I. Yaacob*
Affiliation:
Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Formation of iron oxide nanoparticles within the internal cages of Na–Y zeolites was investigated. Sodium ions within the zeolites were replaced with iron(II) ions. Elemental composition studies showed a significant amount of iron in the exchanged sample. NaOH and dropwise additions of H2O2 at 60 °C triggered formation of zeolite–iron oxide systems. X-ray diffraction (XRD) patterns showed diminishing zeolite peaks along with evolution of peaks corresponding to γ-Fe2O3 and α-Fe2O3 with increasing NaOH concentration. Morphological changes from hexagonal-shaped zeolite to clusters of fine particles were observed under scanning electron microscope. Particles with about 15-nm diameter were detected by transmission electron microscopy. γ-Fe2O3 crystallites of 13.4 nm were determined from the broadening of XRD peaks. The magnetization curves of samples (precipitated using NaOH with concentrations of 2.0 M and above) showed absence of hysteresis and passed through the origin, indicating the particles are superparamagnetic. Gas adsorption–desorption measurement of the system precipitated with 2.0 M NaOH revealed a 26% increase in its specific surface area, indicating the presence of nanometer-sized particles within the zeolites.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Birringer, R. and Gleiter, H. in Encyclopedia of Materials Science and Engineering, edited by R.W. Cahn, Suppl. 1, (Pergamon Press, Oxford, England, 1988), p. 339.Google Scholar
2Seigel, R.W., Nanostruc. Mater. 3, 1 (1993).CrossRefGoogle Scholar
3Seigel, R.W., Mater. Sci. Eng. B 19, 37 (1993).CrossRefGoogle Scholar
4Gomez-Villacieros, F., Hernan, L. and Morales, J., Mater. Res. Bull. 22, 513 (1987).CrossRefGoogle Scholar
5Herrero, E., Cabanas, M.V., Vallet-Regi, M., Martinez, J.L. and Gonzalez-Calbet, J.M., Solid State Ionics 101–103, 213 (1997).Google Scholar
6Music, S., Gotic, M., Popovic, S. and Czako-Nagy, I., Mater. Lett. 20, 143 (1994).CrossRefGoogle Scholar
7Vollath, D., Szabo, D.V., Taylor, R.D. and Willis, J.O., J. Mater. Res. 12, 2175 (1997).CrossRefGoogle Scholar
8Martinez, B., Roig, A., Obradors, X., Molins, E., Rouanet, A., andC. Monty, J. Appl. Phys. 79, 2580 (1996).CrossRefGoogle Scholar
9Gonzalez-Carreno, T., Morales, M.P., Garcia, M. and Serna, C.J., Mater. Lett. 18, 151 (1993).CrossRefGoogle Scholar
10Liu, H., Hihara, T., Sumiyama, K. and Suzuki, K., Phys. Status Solidi A 169, 153 (1998).3.0.CO;2-U>CrossRefGoogle Scholar
11Fang, J., Kumbhar, A., Zhou, W-L. and Stokes, K.L., Mater. Res. Bull. 38 pp. 461–467 (2003).CrossRefGoogle Scholar
12Feltin, N. and Pileni, M.P., J. Phys. IV 7, 609 (1997).Google Scholar
13Bee, A., Massart, R. and Neveu, S., J. Magn. Magn. Mater. 149, 6 (1995).CrossRefGoogle Scholar
14Breck, D.W.: Zeolite Molecular Sieves: Structure, Chemistry and Use (John Wiley & Sons, New York, 1974), p.5.Google Scholar
15Bogomolov, V.N., Poborchii, V.V. and Kholodkevich, S.V., JETP Lett. 31, 435 (1980).Google Scholar
16Stramel, R.D., Nakamura, T. and Thomas, J.K., J. Chem. Soc., Faraday Trans. 84, 1287 (1988).CrossRefGoogle Scholar
17Garcia, J.L., Lopez, A., Lazaro, F.J., Martinez, C. and Corma, A., J. Magn. Magn. Mater. 157–158, 272 (1996).CrossRefGoogle Scholar
18Garcia, J.L., Lazaro, F.J., Martinez, C. and Corma, A., J. Magn. Magn. Mater. 140–144, 363 (1995).CrossRefGoogle Scholar
19Israelachvili, J.N.: Intermolecular and Surface Forces, 2nd ed. (Academic Press, San Diego, 1992), p. 110.Google Scholar
20Gonsalves, K.E., Rangarajan, S.P. and Wang, J., in Handbook of Nanostructured Materials and Nanotechnology, 1 Synthesis and Processing, edited by Nalwa, H. S., (Academic Press, San Diego, 2000) p.1.CrossRefGoogle Scholar
21Ziolo, R.F., Giannelis, E.P., Weinstein, B.A., O’Horo, M.P., Ganguly, B.N., Mehrotra, V., Russell, M.W. and Huffman, D.R., Science 257, 219 (1992).CrossRefGoogle Scholar
22Yee, M. and Yaacob, I.I., Mater. Sci. Forum 437–438, 177 (2003).CrossRefGoogle Scholar
23Cullity, B.D.: Elements of X-ray Diffraction (Addison-Wesley, Reading, Massachusetts, 1956), pp. 9899.Google Scholar
24Bean, C.P. and Livingston, J.D., J. Appl. Phys. 30, 120 (1959).CrossRefGoogle Scholar
25Bean, C.P., J. App. Phys. 26, 1381 (1955).CrossRefGoogle Scholar
26Craik, D.J.: Magnetism Principles and Applications (John Wiley & Sons, Chichester, 1995) pp. 388-389.Google Scholar
27Frei, E.H., Shtrikman, S. and Treves, D., Phys. Rev. 106, 446 (1957).CrossRefGoogle Scholar
28Yaacob, I.I., Nunes, A.C. and Bose, A., J. Colloid Int. Sci. 171, 73 (1995).CrossRefGoogle Scholar
29Gregg, S.J. and Sing, K.S.W.: Adsorption, Surface Area and Porosity (Academic Press, London, 1967), p. 2.Google Scholar
30Perez-Ramirez, J., Mul, G., Kapteijn, F., Moulijn, J.A., Overweg, A.R., Domenech, A., Ribera, A. and Arends, I.W.C.E., J. Catal. 207, 113 (2002).CrossRefGoogle Scholar
31Joyner, R. and Stockenhuber, M., J. Phys. Chem. B 103, 5963 (1999).CrossRefGoogle Scholar