Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T06:48:37.678Z Has data issue: false hasContentIssue false

A study of the local atomic structure in Hg0.80Cd0.20Te using x-ray diffuse scattering

Published online by Cambridge University Press:  31 January 2011

J.P. Quintana
Affiliation:
Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208-3100
J.B. Cohen
Affiliation:
Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208-3100
Get access

Abstract

The local atomic arrangements in a commercial n-type wafer of Hg0.8Cd0.8Te were investigated by measuring the diffuse x-ray scattering in two volumes in reciprocal space. A change in contrast between the two measurements was achieved by making one volume measurement at 12037 eV and a second volume measurement at 12270 eV, i.e., near the HgLIII edge. The difference between these two measurements yielded intensity only due to Hg–Hg, Hg–Te, and Hg–Cd pair interactions. In all three patterns, peak-like features were apparent at the forbidden Bragg peak positions on thermal diffuse scattering ridges that joined major Bragg reflections; these are primarily attributed to second order displacement effects on the mixed cation sublattice. The first two Warren–Cowley short-range order parameters were determined to be α½½0 = −0.050(26) and α110 = 0.118(35). Simulations of the structure revealed small ordered regions with a preference for 3:1 Hg–Cd near-neighbor configurations. The near-neighbor Hg–Te bonds contract from that calculated from the average crystal's lattice parameter, and this Hg–Te distance is less than the distance in HgTe.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kruse, P., in Semiconductors and Semimetals, edited by Williardson, R. K. and Beer, A. C. (Academic Press, New York, 1981), Vol. 18, pp. 120.Google Scholar
2Szofran, F.R. and Lehoczy, S., J. Elect. Mater. 10, 1131 (1981).CrossRefGoogle Scholar
3Bublik, V.T., Kristall und Technik 12, 849 (1978).CrossRefGoogle Scholar
4Bublik, V.T., Gorelik, S.S., and Kapustina, M.D., Inorg. Mater. 7, 1335 (1971).Google Scholar
5Bublik, V. T. and Zaitsev, A. A., Phys. Status Solidi (a) 39, 345 (1977).CrossRefGoogle Scholar
6Kozyrev, S.P., Vodopynaov, L. K., and Triboulet, R., Solid State Commun. 45, 383 (1983).CrossRefGoogle Scholar
7Compaan, A., Bowman, R. C. Jr., and Cooper, D. E., Semicond. Sci. Technol. 5, S73 (1990).CrossRefGoogle Scholar
8Zamir, D.K., Beshah, K., Becla, P., Wolff, P. A., Griffin, R.G., Zax, D., Vega, S., and Yellin, N., J. Vac. Sci. Technol. A 6, 2612 (1988).CrossRefGoogle Scholar
9Zax, D. B., Vega, S., Yellin, N., and Zamir, D., Chem. Phys. Lett. 138, 105 (1987).CrossRefGoogle Scholar
10Mayanovic, R.A., Pong, W-F., and Bunker, B.A., Phys. Rev. B 42, 11174 (1990).CrossRefGoogle Scholar
11Letardi, P., Motta, N., and Balzarotti, A., J. Phys. C. 20, 2853 (1987).CrossRefGoogle Scholar
12Balzaratti, A., Motta, N., Kisiel, A., and Zimnal-Starnawski, M., Phys. Rev. B 31, 7526 (1985).CrossRefGoogle Scholar
13Balzarotti, A., in Ternary and Multinary Compounds, edited by Deb, S. and Zunger, A. (Materials Research Society, TMC, Pittsburgh, PA, 1987), p. 333.Google Scholar
14Borie, B. and Sparks, C. J. Jr., Acta Crystallogr. A 27, 198 (1971).CrossRefGoogle Scholar
15Georgopoulos, P. and Cohen, J.B., J. de Physique C7, 191 (1977).Google Scholar
16Quintana, J. P., J. Appl. Crystallogr. (1993, in press).Google Scholar
17Hayakawa, M. and Cohen, J.B., Acta Crystallogr. 31, 635 (1975).CrossRefGoogle Scholar
18Cenedese, P., Bley, F., and Lefebvre, S., Acta Crystallogr. A 40, 228 (1991).Google Scholar
19Schwartz, L.H. and Cohen, J.B., Diffraction from Materials (Springer-Verlag, Berlin, 1987), p. 408.CrossRefGoogle Scholar
20Quintana, J. P., Butler, B. D., and Haeffner, D. R., J. Appl. Crystal-logr. 24, 184 (1991).CrossRefGoogle Scholar
21Quintana, J.P., Ph.D. Thesis, Northwestern University, Evanston, IL (1991).Google Scholar
22Cromer, D.T. and Liberman, D., J. Chem. Phys. 53, 1891 (1970).CrossRefGoogle Scholar
23Cromer, D.T. and Liberman, D., Acta Crystallogr. A 37, 267 (1981).CrossRefGoogle Scholar
24Cromer, D.T., J. Appl. Crystallogr. 16, 437 (1983).CrossRefGoogle Scholar
25Kissel, L. and Pratt, R. H., Acta Crystallogr. A 46, 170 (1990).CrossRefGoogle Scholar
26Quintana, J.P., J. Appl. Crystallogr. 24, 261 (1991).CrossRefGoogle Scholar
27and, B. T. M. WillisPryor, A. W., Thermal Vibrations in Crystallography (Cambridge University Press, Cambridge, 1975).Google Scholar
28Comstock, R. J., Ph.D. Thesis, Northwestern University, Evanston, IL (1983).Google Scholar
29Wu, T.B., Matsubara, E., and Cohen, J.B., J. Appl. Crystallogr. 16, 407 (1983).CrossRefGoogle Scholar
30Bublik, V.T., Gorelik, S.S., and Kapustina, M.D., Izv. Fiz. 11, 142 (1968).Google Scholar
31Haeffner, D.R. and Cohen, J.B., Acta Metall. 40, 831 (1992).CrossRefGoogle Scholar
32Mikkelsen, J.C. Jr., and Boyce, J.B., Phys. Rev. B 28, 7130 (1983).CrossRefGoogle Scholar
33Sher, A., Chen, A.B., Spicer, W.E., and Shih, C.K., J. Vac. Sci. Technol. A 3, 105 (1985).CrossRefGoogle Scholar
34Hass, K.C. and Vanderbilt, D., J. Vac. Sci. Technol. A 5, 3019 (1987).CrossRefGoogle Scholar
35Gehlen, P. and Cohen, J.B., Phys. Rev. A 139, 844 (1966).Google Scholar