Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-10-05T19:30:53.095Z Has data issue: false hasContentIssue false

Structural study of amorphous WO3 thin films prepared by the ion exchange method

Published online by Cambridge University Press:  31 January 2011

Tokuro Nanba
Affiliation:
Institute of Industrial Science, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan
Yoshio Nishiyama
Affiliation:
Institute of Industrial Science, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan
Itaru Yasui
Affiliation:
Institute of Industrial Science, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan
Get access

Abstract

The structure of amorphous tungsten trioxide films was investigated with IR and Raman spectroscopic analyses and an XRD method. The films were prepared by ion exchange from sodium tungstate as a starting material. Films consisted of microclusters of 10–30 Å diameter, in which the networks are formed with WO6 octahedra sharing their corners and edges. The networks in the as-prepared samples consisted of WO6 units with low symmetry, in which termination by W=O and W—OH2 groups was common. As the post-annealed temperature became higher, the symmetry of WO6 was improved and the edge-sharing octahedra disappeared.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Electrochromism, for example: (a) Deb, S. K., Philos. Mag. 27, 801 (1973); (b) J. Nagai and T. Kamimori, Jpn. J. Appl. Phys. 22, 681 (1983); (c) K. Kuwabara, S. Ichikawa, and K. Sugiyama, J. Mater. Sci. 22, 4499 (1987); (d) P. Delichere, P. Falaras, M. Froment, and A. Hugot-Le Goff, Thin Solid Films 161, 35 (1988). Photochromism, for example: (a) S. K. Deb and J. L. Forrestal, Photochromism, edited by G. H. Brown (Wiley Interscience, New York, 1971), p. 633; (b) M. A. Butler, J. Appl. Phys. 48, 1914 (1977); (c) W. Gissler and R. Menning, J. Electrochem. Soc. 124, 1710 (1977); (d) F. DiQuarto, G. Russo, C. Sunseri, and A. DiPaola, J. Chem. Soc. 78, 3433 (1982).CrossRefGoogle Scholar
2.Chemseddine, A., Morieau, R., and Livage, J., Solid State Ionics 9 & 10, 357 (1983).CrossRefGoogle Scholar
3.Nanba, T. and Yasui, I., J. Solid State Chem. 83, 304 (1989).CrossRefGoogle Scholar
4.Warren, B. E., X-ray Diffraction (Addison-Wesley Pub. Co., London, 1969).Google Scholar
5.Zeller, H. R. and Beyeler, H. U., Appl. Phys. 13, 231 (1977).CrossRefGoogle Scholar
6.Randin, J. P., J. Electronic Mater. 7, 47 (1978).CrossRefGoogle Scholar
7.Gerand, B., Nowogrocki, G., Guenot, J., and Figlarz, M., J. Solid State Chem. 29, 429 (1979).CrossRefGoogle Scholar
8.Gerand, B., Nowogrocki, G., and Figlarz, M., J. Solid State Chem. 38, 312 (1981).CrossRefGoogle Scholar
9.Gebert, E. and Ackermann, R. J., Inorg. Chem. 5, 136 (1966).CrossRefGoogle Scholar
10.Daniel, M. F., Desbat, B., Lassegues, J. C., Gerand, B., and Figlarz, M., J. Solid State Chem. 67, 235 (1987).CrossRefGoogle Scholar
11.Cotton, F. A. and Wing, R. M., Inorg. Chem. 4, 867 (1965).CrossRefGoogle Scholar
12.Beattie, I. R. and Gilson, T. R., J. Chem. Soc. (A), 2322 (1969).CrossRefGoogle Scholar
13.Wycoff, R. W. G., Crystal Structures, 2nd ed. (Wiley, New York, 1964), Chap. V-B.Google Scholar
14.Fuchs, V. J., Hartl, H., and Schiller, W., Angew. Chem. 9, 417 (1973).CrossRefGoogle Scholar
15.Allmann, V. R., Acta Cryst. B27, 1393 (1971).CrossRefGoogle Scholar
16.Sasaki, Y., Acta Chem. Scand. 15, 175 (1961).CrossRefGoogle Scholar
17.Richardson, E., J. Inorg. Nucl. Chem. 12, 79 (1959).CrossRefGoogle Scholar
18.Henning, V. G. and Hllen, A., Z. Kristallogr. 130, 162 (1969)CrossRefGoogle Scholar