Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T12:24:57.526Z Has data issue: false hasContentIssue false

Stress corrosion of organosilicate glass films in aqueous environments: Role of pH

Published online by Cambridge University Press:  31 January 2011

F. Iacopi*
Affiliation:
Inter-university Micro-Electronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium
C. Elia
Affiliation:
Inter-university Micro-Electronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium; and Istituto Universitario degli Studi Superiori di Pavia, Pavia, Italy
T. Fournier
Affiliation:
Inter-university Micro-Electronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium; and Génie des Matériaux, Université Aix-Marseille III, Marseille, France
F. Sinapi
Affiliation:
Inter-university Micro-Electronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium
Y. Travaly
Affiliation:
Inter-university Micro-Electronics Center (IMEC), Kapeldreef 75, B-3001 Leuven, Belgium
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Subcritical cracking of thin glass films caused by stress-corrosion phenomena cannot be neglected when it comes to application and manufacturing processes that involve exposure to aqueous environments. A protocol is introduced to allow for a quantitative study of stress corrosion through channel cracking experiments. By this method, an exponential dependence of the crack propagation rate on the pH of the aqueous environment is revealed. Therefore, this behavior should be accounted for through the use of an appropriate pre-exponential factor in the expression of channel cracking rate. This factor should reflect the reduced crack resistance of the glass film caused by the weakening of the silica bonds behind the crack tip in the aqueous environment. A direct comparison between commercial slurries and reference solutions confirms that the crack resistance is a function of the pH of the ambient.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Maex, K., Baklanov, M.R., Shamiryan, D., Iacopi, F., Brongersma, S.H., Yanovitskaya, Z.S.: Low-dielectric constant materials for microelectronics. J. Appl. Phys. 93, 8793 2003CrossRefGoogle Scholar
2Iacopi, F., Brongersma, S.H., Vandevelde, B., O’Toole, M., Degryse, D., Travaly, Y., Maex, K.: Challenges for structural stability of ultra-low-k-based interconnects. Microelectron. Eng . 75(1), 54 2004CrossRefGoogle Scholar
3Hoofman, R.J.O.M., Nguyen, V.H., Arnal, V., Broekhaart, M., Gosset, L.G., Besling, W.F.A., Fayolle, M., Iacopi, F.: Integration of low-k dielectric films in damascene processes in Dielectrics for Microelectronics, edited by M. Baklanov, K. Maex, and M. Green Wiley & Sons Chichester, UK 2007 Chap. 5 238–239Google Scholar
4Singh, R.K., Bajaj, R.: Advances in chemical–mechanical planarization. Mater. Res. Soc. Bull. 27(10), 743 2002CrossRefGoogle Scholar
5Cook, R.F., Suo, Z.: Mechanisms active during fracture under constraint. Mater. Soc. Bull. 27, 45 2002CrossRefGoogle Scholar
6Cook, R.F., Liniger, E.G.: Stress-corrosion cracking of low-dielectric constant spin-on-glass thin films. J. Electrochem. Soc. 146(12), 4439 1999CrossRefGoogle Scholar
7Tsui, T.Y., Griffin, A.J., Fields, R., Jacques, J.M., McKerrow, A., Vlassak, J.J.: The effect of elastic modulus on channel crack propagation in organosilicate glass films. Thin Solid Films 515(4), 2257 2006CrossRefGoogle Scholar
8Tsui, T.Y., McKerrow, A.J., Vlassak, J.J.: Constraints effects on thin film channel cracking behavior. J. Mater. Res. 20(9), 2266 2005CrossRefGoogle Scholar
9Wiederhorn, S.M., Johnson, H.: Influence of sodium-hydrogen ion-exchange on crack propagation in soda-lime silicate glass. J. Am. Ceram. Soc. 56(2), 108 1973CrossRefGoogle Scholar
10Guyer, E.P., Dauskardt, R.H.: Fracture of nanoporous thin-film glasses. Nat. Mater. 3, 53 2004CrossRefGoogle ScholarPubMed
11Jacques, J.M., Tsui, T.Y., McKerrow, A.J., Kraft, R.: Environmental effects on crack characteristics for OSG materials in Thin Films—Stresses and Mechanical Properties XI,, edited by T.E. Buchheit, A.M. Minor, R. Spolenak, and K. Takashima Mater. Res. Soc. Symp. Proc. 875 Warrendale, PA 2005 O10.6.1CrossRefGoogle Scholar
12Baklanov, M.R., Mogilnikov, K.P., Polovinkin, V.G., Dultsev, F.N.: Determination of pore-size distribution in thin films by ellipsometric porosimetry. J. Vac. Sci. Technol., B 18(3), 1385 2000Google Scholar
13Iacopi, F., Travaly, Y., Van Hove, M., Jonas, A.M., Molina-Aldareguia, J.M., Elizalde, M.R., Ocaña, I.: Extent of plasma damage to porous organosilicate films characterized with nanoindentation, x-ray reflectivity and surface acoustic waves. J. Mater. Res. 21(12), 3161 2006CrossRefGoogle Scholar
14Beuth, J.L. Jr.: Cracking of thin bonded films in residual tension. Int. J. Solids Struct. 29, 1657 1992CrossRefGoogle Scholar
15Guyer, E., Dauskardt, R.H.: Effect of solution pH on the accelerated cracking of nanoporous thin-film glasses. J. Mater. Res. 20(3), 680 2005CrossRefGoogle Scholar
16Lawn, B.: Ch. 5, Chemical processes in crack propagation: Kinetic fracture in Fracture of Brittle Solids, 2nd ed.Cambridge University Press Cambridge, UK 1993 130–131CrossRefGoogle Scholar
17Wiederhorn, S.M., Johnson, H.: Effect of aqueous-solutions on crack-propagation of glass. Am. Ceram. Soc. Bull. 51(4), 372 1972Google Scholar
18Wiederhorn, S.M., Johnson, H.: Effect of the electrolyte pH on crack propagation in glass. J. Am. Ceram. Soc. 56(4), 192 1973CrossRefGoogle Scholar