Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T23:25:56.513Z Has data issue: false hasContentIssue false

Solid-state nuclear magnetic resonance study of the structure of lanthanum phosphate crystals and glasses

Published online by Cambridge University Press:  31 January 2011

Nancy E. Rashid
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
Brian L. Phillips
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
Subhash H. Risbud
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
Get access

Abstract

Lanthanum phosphate glasses were synthesized by melt quenching and characterized by x-ray diffraction, electron microprobe analysis, and solid-state nuclear magnetic resonance spectroscopy. A range of compositions near the metaphosphate composition (75 mol% P2O5) was examined. Comparison of 31P chemical shifts and shielding anisotropies of glasses with those of the crystalline phases of La(PO3)3 (metaphosphate) and LaP5O14 (pentaphosphate) were consistent with the presence of primarily chainlike Q2 phosphate groups.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Locardi, B. and Guadagnino, E., Mater. Chem. Phys. 31, 45 (1992).CrossRefGoogle Scholar
2.Senin, H., Saunders, G., Li, J., and Ford, P., J. Mater. Sci. 29, 562 (1994).CrossRefGoogle Scholar
3.Litvin, B., Chudinova, N., Bebikh, L., and Tananaev, I., Dokl. Akrad. Nauk SSSR, Chem. 249, 1124 (1979).Google Scholar
4.Park, H. and Kreidler, E., J. Am. Ceram. Soc. 67, 23 (1984).CrossRefGoogle Scholar
5.Serra, O.A. and Giesbrecht, E., J. Inorg, Nucl. Chem. 30, 793 (1968).Google Scholar
6.Losso, P. and Sternberg, U., Solid State Nucl. Magn. Reson. 13, 113 (1998).CrossRefGoogle Scholar
7.Herzfeld, J. and Berger, A.E., J. Chem. Phys. 73, 6021 (1980).CrossRefGoogle Scholar
8.Eichele, K. and Wasylishen, R.E., WSOLIDS NMR Simulation Program, Version 1.2 (1999).Google Scholar
9.Matuszewski, J., Kropiwnicka, J., and Znamierowska, T., J. Solid State Chem. 75, 285 (1988).CrossRefGoogle Scholar
10.Hong, H.Y-P., Acta Crystallogr. B 30, 468 (1974).CrossRefGoogle Scholar
11.Botto, I.L. and Baran, E.J., J. Appl. Cryst. 12, 257 (1979).CrossRefGoogle Scholar
12.Duncan, T. and Douglass, D., Chem. Phys. 87, 339 (1984).CrossRefGoogle Scholar
13.Grimmer, A. and Wolf, G., Eur. J. Solid State Inorg. Chem. 28, 221 (1991).Google Scholar
14.Hudgens, J.J., Ph.D. Thesis, Iowa State University, 1974.Google Scholar
15.Losso, P., Schnabel, B., Jager, C., Sternberg, U., Stachel, D., and Smith, D.O., J. Non-Cryst. Solids 143, 265 (1992).CrossRefGoogle Scholar
16.Sternberg, U., Petrowski, F., and Priess, W., Z. Phys. Chem. Neue Folge 168, 115 (1990).CrossRefGoogle Scholar
17.Zumbulyadis, N., Henrichs, P.M., and Young, R.H., J. Chem. Phys. 75, 1603 (1981).CrossRefGoogle Scholar
18.Brow, R., Phifer, C., Turner, G., and Kirkpatrick, R., J. Am. Ceram. Soc. 74, 1287 (1991).CrossRefGoogle Scholar
19.Alam, T.M. and Brow, R.K., J. Non-Cryst. Solids 223, 1 (1998).CrossRefGoogle Scholar
20.Turner, G.L., Smith, K.A., Kirkpatrick, R.J., and Oldfield, E., J. Magn. Reson. 70, 408 (1986).Google Scholar
21.Brow, R., Kirkpatrick, R., and Turner, G., J. Am. Ceram. Soc. 76, 919 (1993).CrossRefGoogle Scholar
22.Hoppe, U., Kranold, R., Stachel, D., Barz, A., and Hannon, A.C., J. Non-Cryst. Solids 232–234, 44 (1998).CrossRefGoogle Scholar