Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T12:02:53.282Z Has data issue: false hasContentIssue false

Size stabilization of nanoparticles by polysaccharides: Effectiveness in the wet and curing steps

Published online by Cambridge University Press:  31 January 2011

Emanuela Callone*
Affiliation:
Department of Materials Engineering and Industrial Technologies, University of Trento, via Mesiano 77, 38050 Trento, Italy
Giovanni Carturan
Affiliation:
Department of Materials Engineering and Industrial Technologies, University of Trento, via Mesiano 77, 38050 Trento, Italy
Marco Ischia
Affiliation:
Department of Materials Engineering and Industrial Technologies, University of Trento, via Mesiano 77, 38050 Trento, Italy
Adriana Sicurelli
Affiliation:
Department of Materials Engineering and Industrial Technologies, University of Trento, via Mesiano 77, 38050 Trento, Italy
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Starch suspension proves to be a useful matrix for the hydrolytic route to metal oxide nanoparticles, due to its size-stabilization effect, which works also at high temperatures. To understand the type of interaction between the organic part and the oxide particles, various parameters, such as viscosity, temperature, degree of polymerization, and organic/inorganic kinds of dispersant, are tested through x-ray diffraction (XRD), transmission electron microscopy (TEM), solid-state nuclear magnetic resonance (NMR), and thermogravimetric mass spectra (TG–MS) analyses of the obtained SnO2 nanopowders. Results highlight the unique role of starch compared with other hydrophilic dispersants that do not ensure effective size stabilization on curing up to 600 °C. The proof comes from the study of pyrolysis of the residual organic groups surrounding the particles. They are chelating carboxylic species that prevent the coalescence among metal oxide nanoparticles.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Peng, X.G., Manna, L., Yang, W.D., Wickham, J., Scher, E., Kadavanich, A.Alivisatos, A.P.: Shape control of CdSe nanocrystals. Nature 404, 59 2000CrossRefGoogle ScholarPubMed
2Sun, Y.Xia, Y.: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 2002CrossRefGoogle ScholarPubMed
3Peng, X.: Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 15(5), 459 2003CrossRefGoogle Scholar
4Liu, J., Lam, Y.L., Chan, Y.C., Zhou, Y., Ooi, B.S.Yun, Z.S.: Experimental and theoretical study of the cracking behavior of sol-gel-derived SiO2 film on InP substrate. J. Appl. Phys. A: Mater. Sci. Process. 70(3), 341 2000CrossRefGoogle Scholar
5Yuan, X-C., Yu, W.X., Ngo, N.Q.Cheong, W.C.: Improved sol-gel thin film for fabrication of multilevel structures using a high-energy beam-sensitive gray-scale mask. Opt. Eng. 42(2), 302 2003CrossRefGoogle Scholar
6Yu, W.X.Yuan, X-C.: Fabrication of refractive microlens in hybrid SiO2/TiO2 sol-gel glass by electron-beam lithography. Opt. Express 11(8), 899 2003CrossRefGoogle ScholarPubMed
7Sakurai, C., Fukui, T.Okuyama, M.: Preparation of zirconia coatings by hydrolysis of zirconium alkoxide with hydrogen peroxide. J. Am. Ceram. Soc. 76(4), 1061 1993CrossRefGoogle Scholar
8Kozuka, H.Hirano, M.: Radiative striations and surface roughness of alkoxide-derived spin coating films. J. Sol.-Gel Sci. Technol. 19(1), 501 2000CrossRefGoogle Scholar
9Ohya, Y., Saiki, H.Takahashi, Y.: Preparation of transparent, electrically conducting ZnO film from zinc acetate and alkoxide. J. Mater. Sci. 29(15), 4099 1994CrossRefGoogle Scholar
10Ji, Q.Shimizu, T.: Chemical synthesis of transition metal oxide nanotubes in water using an iced lipid nanotube as a template. Chem. Commun. 4411 2005CrossRefGoogle ScholarPubMed
11Miyao, T., Saika, T., Saito, Y.Naito, S.: Preparation of alumina and silica–alumina nanotubes encapsulating platinum ultrafine particles. J. Mater. Sci. Lett. 22(7), 543 2003CrossRefGoogle Scholar
12Dirè, S., Pagani, E., Babonneau, F., Ceccato, R.Carturan, G.: Unsupported SiO2-based organic–inorganic membrane. Part 1. Synthesis and structural characterization. J. Mater. Chem. 7(1), 67 1997CrossRefGoogle Scholar
13Brinker, C.J.Scherer, G.W.: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press San Diego, CA 1990Google Scholar
14Brinker, C.J., Hurd, A.J., Schunk, P-R.Ashley, C.S.: Review of sol-gel thin film formation. J. Non-Cryst. Solids 147 & 148, 424 1992CrossRefGoogle Scholar
15Ramesh, S., Sominska, E., Cina, B., Chaim, R.Gedanken, A.: Nanocrystalline γ-alumina synthesized by sonohydrolysis of alkoxide precursor in the presence of organic acids: Structure and morphological properties. J. Am. Ceram. Soc. 83(1), 89 2000CrossRefGoogle Scholar
16Li, D.Kaner, R.B.: Shape and aggregation control of nanoparticles: Not shaken, not stirred. J. Am. Chem. Soc. 128, 968 2006CrossRefGoogle Scholar
17Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F.Yan, H.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15(5), 353 2003CrossRefGoogle Scholar
18Hunter, R.J.: Foundation of Colloidal Science 1, Oxford University Press New York 1987Google Scholar
19Callone, E., Carturan, G.Sicurelli, A.: Nanopowders of metallic oxides by the hydrolytic route with starch stabilization and biological abetment. J. Nanosci. Nanotech. 6(1), 254 2006CrossRefGoogle ScholarPubMed
20Callone, E., Carturan, G., Ischia, M.Sicurelli, A.: Nanometric oxides from molecular precursors in the presence of starch. Coatings of glass with these oxides in silica sols. J. Mater. Res. 21(7), 1726 2006CrossRefGoogle Scholar
21Canevali, C., Chiodini, N., Morazzoni, F., Padovani, J., Paleari, A., Scotti, R.Spinolo, G.: Substitutional tin doped silica glasses: An infrared study of the sol-gel transition. J. Non-Cryst. Solids 293–295, 32 2001CrossRefGoogle Scholar
22Acciarri, M., Canevali, C., Mari, C.M., Mattoni, M., Ruffo, R., Scotti, R., Morazzoni, F., Barreca, D., Armelao, L., Tondello, E., Bontempi, E.Depero, L.E.: Nanocrystalline SnO2-based thin films obtained by sol-gel route: A morphological and structural investigation. Chem. Mater. 15, 2646 2003CrossRefGoogle Scholar
23Maschio, R. Dal, Dirè, S., Carturan, G., Enzo, S.Battezzati, L.: Phase separation in gel-derived materials, separation and crystallization of SnO2 within an amorphous SiO2 matrix. J. Mater. Res. 7(2), 435 1992CrossRefGoogle Scholar
24Lutterotti, L., Matthies, S.Wenk, H.R.: Proc. 12th International Conference on Textures of Materials (ICOTOM-12),1999 1599Google Scholar
25Campostrini, R., Sorarù, G.D., Ceccato, R., Carturan, G.Dandrea, G.: Pyrolysis study of methyl-substituted Si–H containing gels as precursors for oxycarbide glasses, by combined thermogravimetry, gas chromatographic and mass spectrometric analysis. J. Mater. Chem. 6, 585 1996CrossRefGoogle Scholar
26Rao, M.A., Cooley, M.J.Vitali, A.A.: Flow properties of concentrated juices at low temperatures. Food Technol. 38, 113 1984Google Scholar
27Thebaudin, J.Y., Lefebvre, A.C.Doublier, J.L.: Rheology of starch pastes from starches of different origins: Application to starch- based sauces. Lebensm.-Wiss. U. Technol. 31(4), 354 1998CrossRefGoogle Scholar
28Tunstall, D.P., Patou, S., Liu, R.S.Kao, Y.H.: Size effects in the NMR of SnO2 powders. Mater. Res. Bull. 34, 1513 1999CrossRefGoogle Scholar
29Dragunski, D.C.Pawlicka, A.: Preparation and characterization of starch grafted with toluene and polypropylene oxide diisocyanate. Mater. Res. 4(2), 77 2001CrossRefGoogle Scholar
30Williamson, M.P., Trevitt, C.Noble, J.M.: NMR studies of dextran oligomer interactions with model polyphenols. Carbohydr. Res. 266(2), 229 1995CrossRefGoogle Scholar
31Dinnebier, R.E., Vensky, S., Jansen, M.Hanson, J.C.: Crystal structures and topological aspects of the high-temperature phases and decomposition products of the alkali metal oxalates M2[C2O4] (M = K, Rb,Cs). Chem. Eur. J. 11, 1119 2005CrossRefGoogle ScholarPubMed
32Mohamed, M.A., Galwey, A.K.Halawy, S.A.: A comparative study of the thermal reactivities of some transition metal oxides in selected atmospheres. Thermochim. Acta 429, 57 2005CrossRefGoogle Scholar
33Frost, R.L.Weier, M.L.: Thermal decomposition of humboldtine—a high resolution thermogravimetric and hot stage Raman spectroscopic study. J. Therm. Anal. Calorim. 75, 277 2004CrossRefGoogle Scholar
34Hehre, E.J.: The biological synthesis of dextran from dextrins. J. Biol. Chem. 192, 162 1951CrossRefGoogle ScholarPubMed
35Vargas, M.A. Larrubia, Busca, G., Montanari, T., Herrera Delgado, M.C., Alemany, L.J.: Preparation and characterization of silicon hydride oxide: A fully hydrophobic solid. J. Mater. Chem. 15, 910 2005CrossRefGoogle Scholar
36Chiodini, N., Morazzoni, F., Paleari, A., Scotti, R.Spinolo, G.: Sol-gel synthesis of monolithic tin-doped silica glass. J. Mater. Chem. 9, 2653 1999CrossRefGoogle Scholar