Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T01:23:54.519Z Has data issue: false hasContentIssue false

Silicide formation in metal/Si structures and diffusion barrier properties of CVD tungsten films

Published online by Cambridge University Press:  31 January 2011

Y. Pauleau
Affiliation:
Centre National d'Etudes des Télécommunications, B.P. 98, 38243 Meylan, France
F. C. Dassapa
Affiliation:
Centre National d'Etudes des Télécommunications, B.P. 98, 38243 Meylan, France
Ph. Lami
Affiliation:
Centre National d'Etudes des Télécommunications, B.P. 98, 38243 Meylan, France
J. C. Oberlin
Affiliation:
Centre National d'Etudes des Télécommunications, B.P. 98, 38243 Meylan, France
F. Romagna
Affiliation:
Centre National d'Etudes des Télécommunications, B.P. 98, 38243 Meylan, France
Get access

Abstract

Tungsten films were deposited on Si substrates by the H2 or Si reduction of WF6 under various experimental conditions. The composition and structure of as-deposited samples as well as the interfacial reactions and interdiffusion of elements in annealed samples were characterized by nuclear reaction analyses, sheet resistance measurements, x-ray diffraction technique, and Rutherford backscattering spectroscopy. The amount of oxygen at W–Si interfaces was found to be dependent on the cleaning treatment of the Si surface used before WF6–Si interaction. The interfacial oxygen concentration was less than 1 ⊠ 1014 at./cm2 (detection limit of the nuclear reaction analysis) and (2–7) ⊠ 1016 at./cm2 using an HF cleaning and the RCA treatment, respectively. For W/Si samples, the formation temperature of WSi2 was dependent on the dopant level in the Si substrates and the oxygen concentration at W–Si interfaces. The silicidation reaction occurred at 625 °C in “oxygen free” W/Si structures while for structures containing interfacial oxygen atoms, this reaction occurred above 800 °C. In Al/W/Si structures, the intermetallic compound, WAl12, was formed by annealing at 450 °C for 90 min. Furthermore, the formation of WSi2 was observed in structures annealed at a temperature in the range of 550 °C–600 °C regardless of the oxygen concentration at the W–Si interface. A model to explain the effect of interfacial oxygen atoms on the silicidation reaction and the influence of the Al overlayer on the thermal stability of Al/W/Si structures is proposed and discussed in this paper.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Pauleau, Y., in Proceedings of the NATO Advanced Study Institute on Microelectronic Materials and Processes, edited by Levy, R. A. (Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 1988), Chap. 13.Google Scholar
2Broadbent, E.K. and Stacy, W.T., Solid State Technol. 28 (12), (1985).Google Scholar
3Green, M. L., Ali, Y. S., Boone, T., Davidson, B. A., Feldman, L. C., and Nakahara, S., in Executed Abstracts of the 170th Electrochemical Society Meeting, San Diego, 1986 (The Electrochemical Society, Pennington, NJ, 1986), Vol. 86-2, p. 498.Google Scholar
4Green, M. L., Ali, Y. S., Davidson, B.A., Feldman, L. C., and Nakahara, S., in “Thin Films-Interfaces and Phenomena,” Mat. Res. Soc. Symp. Proc., edited by Nemanich, R. J., Ho, P. S., and Lau, S. S. (Materials Research Society, Pittsburgh, PA, 1986), Vol. 54, p. 723.Google Scholar
5Tracy, M. E., in “Tungsten and Other Refractory Metals for VLSI Applications,” Proceedings of the 1984 and 1985 Workshops, edited by Blewer, R. S. (Materials Research Society, Pittsburgh, PA, 1986), p. 211.Google Scholar
6Green, M. L., Ali, Y. S., Boone, T., Davidson, B. A., Feldman, L. C., and Nakahara, S., in “Tungsten and Other Refractory Metals for VLSI Applications II,” Proceedings of the 1986 Workshop, edited by Broadbent, E. K. (Materials Research Society, Pittsburgh, PA, 1987), p. 85.Google Scholar
7Green, M. L., Ali, Y. S., Boone, T., Davidson, B. A., Feldman, L. C., and Nakahara, S., J. Electrochem. Soc, 134 (9), 2285 (1987).CrossRefGoogle Scholar
8Tsao, K.Y. and Busta, H. H., J. Electrochem. Soc, 131 (11), 2702 (1984).CrossRefGoogle Scholar
9Busta, H.H. and Tang, C.H., J. Electrochem. Soc, 133 (6), 1195 (1986).CrossRefGoogle Scholar
10Wong, M., Kobayashi, N., Browning, R., Paine, D., and Saraswat, K. C., J. Electrochem. Soc, 134 (9), 2339 (1987).CrossRefGoogle Scholar
11Green, M.L., Ali, Y. S., Aspnes, D., Davidson, B.A., Feldman, L. C., and Nakahara, S., in “Tungsten and Other Refractory Metals for VLSI Applications,” Proceedings of the 1984 and 1985 Workshops, edited by Blewer, R. S. (Materials Research Society, Pittsburgh, PA, 1986), p. 209.Google Scholar
12Joshi, R. V. and Smith, D. A., in “Materials Issues in Silicon Integrated Circuit Processing,” Mat. Res. Soc. Symp. Proc, edited by Wittmer, M., Stimmell, J., and Strathman, M. (Materials Research Society, Pittsburgh, PA, 1986); Vol. 71, p. 309.Google Scholar
13Chuzhko, R. K., Kirillov, I. V., Golovanov, Yu N., and Zakharov, A. P., J. Cryst. Growth 3-4, 219 (1968).CrossRefGoogle Scholar
14Schroff, A. M., Delval, G., and Lebreton, J., in Proceedings of the 5th International Conference on Chemical Vapor Deposition, edited by Blocher, J. M. Jr, Hintermann, H. E., and Hall, L. H. (The Electrochemical Society Softbound Proceeding Series, Pennington, NJ, 1975), p. 351.Google Scholar
15Kamins, T.I., Bradbury, D. R., Cass, T. R., Laderman, S.S., and Reid, G.A., J. Electrochem. Soc. 133 (12), 2555 (1986).CrossRefGoogle Scholar
16Suguro, K., Nakasaki, Y., Shima, S., Yoshii, T., Moriya, T., and Tango, H., J. Appl. Phys. 62 (4), 1265 (1987).CrossRefGoogle Scholar
17Kotani, H., Tsutsumi, T., Komori, J., and Nagao, S., in Technical Digest of the International Electron Devices Meeting, Washington, DC, 1987 (IEEE, New York, 1987), p. 217.Google Scholar
18Pauleau, Y., Bull. Soc. Chim. France 4, 583 (1985).Google Scholar
19Pauleau, Y., Lami, Ph., Dassapa, F., Romagna, F., and Oberlin, J. C., Le Vide, Les Couches Minces 42 (236), 163 (1987).Google Scholar
20Kern, W. and Puotinen, D. A., RCA Rev. 31 (2), 187 (1970).Google Scholar
21Pauleau, Y., Lami, Ph., Tissier, A., Pantel, R., and Oberlin, J.C., Thin Solid Films 143 (3), 259 (1986).CrossRefGoogle Scholar
22Kamins, T. I., Laderman, S. S., Coulman, D. J., and Turner, J. E., J. Electrochem. Soc. 133 (7), 1438 (1986).CrossRefGoogle Scholar
23Blewer, R. S. and Tracy, M. E., in “Tungsten and Other Refractory Metals for VLSI Applications,” Proceedings of the 1984 and 1985 Workshops, edited by Blewer, R. S. (Materials Research Society, Pittsburgh, PA, 1986), p. 53.Google Scholar
24Silversmith, D. J., Rathman, D. D., and Mountain, R. W., in “Thin Films and Interfaces,” Mat. Res. Soc. Symp. Proc, edited by Ho, P. S. and Tu, K. N. (Elsevier Sciences Pub., Amsterdam, The Netherlands, 1982), Vol. 10, p. 425.Google Scholar
25Hara, T., Enomoto, S., Ohtsuka, N., and Shima, S., Jpn. J. Appl. Phys. 24 (7), 828 (1985).CrossRefGoogle Scholar
26Levy, R.A., Green, M.L., Gallagher, P. K., and Ali, Y. S., J. Electrochem. Soc. 133 (9), 1905 (1986).CrossRefGoogle Scholar
27Shioya, Y., Maeda, M., and Yanagida, K., J. Vac. Sci. Technol. B 4 (5), 1175 (1986).CrossRefGoogle Scholar
28Rubloff, G.W., Tromp, R. M., and Loenen, E. J. van, Appl. Phys. Lett. 48 (23), 1600 (1986).CrossRefGoogle Scholar