Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T07:11:35.576Z Has data issue: false hasContentIssue false

Selenium oxyanions: Highly selective uptake by a novel anion exchanger

Published online by Cambridge University Press:  31 January 2011

Naofumi Kozai*
Affiliation:
Department of Environmental Sciences, Japan Atomic Energy Research Institute, Tokai, Ibaraki, 319-1195 Japan
Toshihiko Ohnuki
Affiliation:
Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki, 319-1195 Japan
Sridhar Komarneni
Affiliation:
Department of Crop and Soil Sciences and Materials Research Institute, 205 Material Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
*
a)Address all correspondence to this author.[email protected]
Get access

Abstract

We report the extremely high and selective uptake of selenium oxyanions by a novel anion exchanger, Ni1-xZn2x(OH)2(OCOCH3)2xnH2O (0.15<x<0.25). The tested Ni–Zn basic salt (x=0.24) exhibited very high selectivity for Se(IV) [Kd = 9.0 × 104 cm3/g with an initial Se(IV) concentration of 1 × 10-4 M] in the presence of 0.1 M C1 solution. The uptake of Se(IV) on the Ni–Zn basic salt was irreversible when treated with solutions containing 1 N C1 1N NO3 or 1 N PO43−This novel exchanger also showed high Kd (2.6 × 103 cm3/g) for Se(VI), and therefore it is expected to be useful for decontamination and removal of selenium oxyanions from contaminated water.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Adriano, D.C., Trace Elements in the Terrestrial Environment (Springer-Verlag, New York, 1986).CrossRefGoogle Scholar
2.Haygarth, P.M., in Selenium in the Environment, edited by Frankenberger, W.T. and Benson, S. (Marcel Dekker, New York, 1994), p. 1.Google Scholar
3.McNeal, J.M. and Balistrieri, L.S., in Selenium in Agriculture and the Environment, edited by Jacobs, J.W. (American Society of Agronomy, 1989), p. 1.Google Scholar
4.Myneni, S.C.B., Tokunaga, T.K., and Brown, G.E. Jr., Science 278, 1106 (1997).CrossRefGoogle Scholar
5.Ohlendorf, H.M., Hoffman, D.J., Saiki, M.K., and Aldrich, T.W., Sci. Total Environ. 52, 49 (1986).CrossRefGoogle Scholar
6.Tsuji, M., Ikeda, Y., Sazarashi, M., Yamaguchi, M., Matsunami, J., and Tamura, Y., Mater. Res. Bull. 35, 2109 (2000).CrossRefGoogle Scholar
7.Merrill, D.T., Manzione, M.A., Parker, D.S., Petersen, J.J., Chow, W., and Hobbs, A.O., Environ. Prog. 6, 82 (1987).CrossRefGoogle Scholar
8.Gerhardt, M.B., Green, F.B., Newman, R.D., Lundquist, T.J., Tresan, R.B., and Oswald, W.J., Res. J. Water Pollut. Control Fed. 63, 799 (1991).Google Scholar
9.Owens, L.P., in Environmental Chemistry of Selenium, edited by Frankenberger, W.T. Jr., and Richard, R.A. (Dekker, New York, 1998), p. 501.Google Scholar
10.Ramana, A. and Sengupta, A.K., J. Environ. Eng. 118, 755 (1992).CrossRefGoogle Scholar
11.Batista, J.R. and Young, Y.C., Miner. Metall. Process. 14, 29 (1997).Google Scholar
12.Breck, D.W., Zeolite Molecular Sieves (John Wiley & Sons, New York, 1974).Google Scholar
13.Clearfield, A., Inorganic Ion Exchange Materials (CRC Press, Boca Raton, FL, 1982).Google Scholar
14.Anthony, R.G., Philip, C.V., and Dosch, R.G., Waste Management 13, 503 (1993).CrossRefGoogle Scholar
15.Komarneni, S. and Roy, R., Science 239, 1286 (1989).CrossRefGoogle Scholar
16.Paulus, W.J., Komarneni, S., and Roy, R., Nature 299, 707 (1992).Google Scholar
17.Bish, D.L., Bull. Mineral. 103, 170 (1980).Google Scholar
18.Carrado, K.A., Kostapapas, A., and Suib, S.L., Solid State Ionics, 26, 77 (1988).CrossRefGoogle Scholar
19.Komarneni, S., Kozai, N., and Roy, R., J. Mater. Chem. 8, 1329 (1998).CrossRefGoogle Scholar
20.Roy, D.M., Roy, R., and Osborn, E.F., Am. J. Sci. 251, 337 (1953).CrossRefGoogle Scholar
21.Fetter, G., Ramos, E., Olguin, M.T., Bosch, P., Lopez, T., and Bulbulian, S., Radioanal, J.. Nucl. Chem. 221, 63 (1997).CrossRefGoogle Scholar
22.Kang, M.J., Chun, K.S., Rhee, S.W., and Do, Y., Radiochim. Acta 85, 57 (1999).CrossRefGoogle Scholar
23.Kang, M.J., Rhee, S.W., Moon, H., Neck, V., and Fanghaenel, Th., Radiochim. Acta 75, 169 (1996).CrossRefGoogle Scholar
24.Serrano, J., Bertin, V., and Bulbulian, S., Langmuir 16, 3355 (2000).CrossRefGoogle Scholar
25.Yamanaka, S., Ando, K., and Ohashi, M., in Advances in Porous Materials, edited by Komarneni, S., Smith, D.M., and Beck, J.M. (Mater. Res. Soc. Symp. Proc. 371, 1995), p. 131.Google Scholar
26.Fetter, G., Hemandez, F., Maubert, A.M., Lara, V.H., and Bosch, P., J. Porous Mater. 4, 27 (1997).CrossRefGoogle Scholar
27.Komarneni, S., Li, Q.H., and Roy, R., J. Mater. Res. 11, 1866 (1996).CrossRefGoogle Scholar
28.Thermodynamic Database HATCHES ver.11.0, OECD-NEA (1998).Google Scholar
29.Smith, R.M. and Martell, A.E., Inorganic Complexes, Critical Stability Constants, Vol. 4 (Plenum, New York, 1976).CrossRefGoogle Scholar