Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T06:37:57.626Z Has data issue: false hasContentIssue false

Seeded Epitaxial Growth of PbTiO3 Thin Films on (001) LaAlO3 using the Chemical Solution Deposition Method

Published online by Cambridge University Press:  31 January 2011

J. H. Kim
Affiliation:
Materials Department, College of Engineering, University of California,Santa Barbara, California 93106
F. F. Lange
Affiliation:
Materials Department, College of Engineering, University of California,Santa Barbara, California 93106
Get access

Abstract

Epitaxial PbTiO3 (PTO) thin films were grown on (001) LaAlO3 (LAO) substrates by a preseeded, two-step process via spin coating a Pb–Ti double alkoxide precursor solution. In the first step, a substrate was preseeded with epitaxial islands of PTO by coating the substrate with a very thin layer of the precursor solution and heat treating to 800 °C for 1 h. The isolated islands had an epitaxial orientation relationship of [100] (001)PTO || [100] (001)LAO. In the second step, another PTO thin film was deposited by spin coating to produce an epitaxial film via grain growth from the seeded islands. The sequence of epitaxy during heating between 400 and 800 °C was characterized by x-ray diffraction, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy (TEM). This sequence was compared to the case where the LAO substrate was not seeded. Regardless of whether the substrate was seeded or not, perovskite PTO grains nucleated and grew within the pyrolyzed, amorphous film. Films grown on the unseeded substrates were, at best, only highly textured, polycrystalline films. TEM observations showed that only a low number of epitaxial nuclei formed at the substrate/film interface due, apparently, to the large strain energy associated with the large lattice mismatch (~4%) between PTO and LAO. Other, unoriented, PTO grains that nucleated within the amorphous film were not consumed as the epitaxial grains grew larger with increasing temperature. On the other hand, good epitaxial films could be produced when the number density of epitaxial nuclei was increased by first forming a seeded substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jaber, B., Remiens, D., and Thierry, B., J. Mater. Res. 12, 997 (1997).CrossRefGoogle Scholar
2.Chen, Y-F., Yu, T., Chen, J-X., Shun, L., Li, P., and Ming, N-B., Appl. Phys. Lett. 66, 148 (1995).CrossRefGoogle Scholar
3.Theis, C. D. and Schlom, D. G., J. Mater. Res. 12, 1297 (1997).CrossRefGoogle Scholar
4.Seifert, A., Lange, F. F., and Speck, J., J. Mater. Res. 10, 680 (1995).CrossRefGoogle Scholar
5.Wang, Y., Zhang, P., Qu, B., and Zhong, W., J. Appl. Phys. 71, 6121 (1992).CrossRefGoogle Scholar
6.Foster, C. M., Li, Z., Buckett, M., Miller, D., Baldo, P. M., Rehn, L. E., Bai, G. R., Guo, D., You, H., and Merkle, K. L., J. Appl. Phys. 78, 2607 (1995).CrossRefGoogle Scholar
7.De Veirman, A. E. M., Cillessen, J. F. M., De Keijser, M., Wolf, R. M., Taylor, D. J., Staals, A. A., and Dormans, G. J.M, in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D. K., Phillips, J.M., Ramesh, R., and Wolf, R. M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 329.Google Scholar
8.Miller, K. T. and Lange, F. F., J. Mater. Res. 6, 2387 (1991).CrossRefGoogle Scholar
9.Miller, K. T., Lange, F. F., and Marshall, D. B., J. Mater. Res. 5, 157 (1990).CrossRefGoogle Scholar
10.Cane, W. M., Spratt, J. P., and Hershinger, L. W., J. Appl. Phys. 37, 2085 (1966).Google Scholar
11.Wu, N. L. and Phillips, J., J. Appl. Phys. 59, 3572 (1986).CrossRefGoogle Scholar
12.Seifert, A., Vojta, A., Speck, J. S., and Lange, F. F., J. Mater. Res. 11, 1470 (1996).CrossRefGoogle Scholar
13.Budd, K. D., Dey, S. K., and Payne, D. A., Brit. Ceram. Proc. 36, 107 (1985);Google Scholar
Budd, K. D., Ph.D. Thesis, University of Illinois at Urbana–Champaign (1986).Google Scholar
14.Blum, J. B. and Gurkovich, S. R., J. Mater. Sci. 20, 4479 (1985).CrossRefGoogle Scholar
15.Roitburd, A. L., Phys. Status Solidi (a) 37, 329 (1976).CrossRefGoogle Scholar
16.Stemmer, S., Streiffer, S. K., Ernst, F., and Rühle, M., Phys. Status Solidi (a) 147, 135 (1995).CrossRefGoogle Scholar
17.Pompe, W., Gong, X., Suo, Z., and Speck, J. S., J. Appl. Phys. 74, 6012 (1993).CrossRefGoogle Scholar
18.Speck, J. S., Daykin, A. C., Seifert, A., Romanov, A. E., and Pompe, W., J. Appl. Phys. 78, 1696 (1995).CrossRefGoogle Scholar
19.Ijima, K., Takayama, R., Tomita, Y., and Ueda, I., J. Appl. Phys. 60, 2914 (1986).CrossRefGoogle Scholar
20.Chang, J. F. and Desu, S. B., J. Mater. Res. 9, 955 (1994).CrossRefGoogle Scholar
21.Tani, T. and Payne, D. A., J. Am. Ceram. Soc. 77, 1242 (1994).CrossRefGoogle Scholar
22.Tuttle, B. A., Voigt, J. A., Goodnow, D. C., Lampa, D. L., Headley, T. J., Eatough, M. O., Zender, G., Nasby, R. D., and Rodgers, S. M., J. Am. Ceram. Soc. 76, 1537 (1993).CrossRefGoogle Scholar
23.Hu, H., Peng, C. J., and Krupanidhi, S. B., Thin Solid Films 223, 327 (1993).CrossRefGoogle Scholar