Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T20:07:38.190Z Has data issue: false hasContentIssue false

Rapid synthesis of hydroxyapatite nanoparticles via a novel approach in the dual-frequency ultrasonic system for specific biomedical application

Published online by Cambridge University Press:  06 May 2019

Shi-ting Deng
Affiliation:
College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
Zi-ting Lin
Affiliation:
College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
Hai-xia Tang
Affiliation:
College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
Shahid Ullah
Affiliation:
Department of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
Yong-guang Bi*
Affiliation:
College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China; and The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The hydroxyapatite nanoparticles (nHAPs) were synthesized rapidly by the self-assembled dual-frequency ultrasonic method. The ultrasonic time and power effect on the morphology and phase composition of nHAPs were investigated through field-emission scanning electron microscopy (FE-SEM), X-ray diffraction, energy dispersive spectrometer (EDS) spectrometer, and Fourier transform infrared spectroscopy, which showed that the most uniform nanoparticles were obtained when the ultrasonic time was 30 min and the ultrasonic power was 280 W. Cytotoxicity and hemolysis tests showed that an indistinctive cytotoxic effect was within the concentration of 25–400 μg/mL and the hemolytic ratio was below 2.0% at concentration of 25–200 μg/mL, respectively, revealing a good biocompatibility of nHAPs. By loading tetracycline hydrochloride onto nHAPs spheres, the drug release results showed that the drug loading and encapsulation efficiency were (26.34 ± 2.99)% and (52.68 ± 5.98)%, respectively. The drug-loaded sample shows a slow-release property, indicating that nHAPs may be promising as drug carriers.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Martin, R.B.: Bone as a ceramic composite material. Bioceramics 293, 515 (1999).Google Scholar
Eliaz, N., Sridhar, T.M., Kamachi Mudali, U., and Raj, B.: Electrochemical and electrophoretic deposition of hydroxyapatite for orthopaedic applications. Surf. Eng. 21, 238242 (2005).10.1179/174329405X50091CrossRefGoogle Scholar
Yi, Z., Wang, K., Tian, J., Shu, Y., Yang, J., Xiao, W., Li, B., and Liao, X.: Hierarchical porous hydroxyapatite fibers with a hollow structure as drug delivery carriers. Ceram. Int. 42, 1907919085 (2016).10.1016/j.ceramint.2016.09.067CrossRefGoogle Scholar
Abdulkareem, E.H., Memarzadeh, K., Allaker, R.P., Huang, J., Pratten, J., and Spratt, D.: Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials. J. Dent. 43, 14621469 (2015).10.1016/j.jdent.2015.10.010CrossRefGoogle ScholarPubMed
Zhang, Z., Yan, C., Jin, D., Jia, X., Zhou, J., and Lv, H.: Solid dispersion of berberine–phospholipid complex/TPGS 1000/SiO2: Preparation, characterization and in vivo studies. Int. J. Pharm. 465, 306316 (2014).CrossRefGoogle Scholar
Tang, W., Yuan, Y., Liu, C., Wu, Y., Lu, X., and Qian, J.: Differential cytotoxicity and particle action of hydroxyapatite nanoparticles in human cancer cells. Nanomedicine 9, 397412 (2013).10.2217/nnm.12.217CrossRefGoogle ScholarPubMed
Ghosh, S.K., Nandi, S.K., Kundu, B., Datta, S., De, D.K., Roy, S.K., and Basu, D.: In vivo response of porous hydroxyapatite and beta-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. J. Biomed. Mater. Res., Part B 86, 217 (2008).CrossRefGoogle ScholarPubMed
Xiao, Q.Y., Zhou, K.C., Chen, C., Jiang, M.X., Zhang, Y., Luo, H., and Zhang, D.: Hollow and porous hydroxyapatite microspheres prepared with an O/W emulsion by spray freezing method. Mater. Sci. Eng., C 69, 10681074 (2016).10.1016/j.msec.2016.07.082CrossRefGoogle Scholar
Ben-Arfa, B.A.E., Salvado, I.M.M., Ferreira, J.M.F., and Pullar, R.C.: Novel route for rapid sol–gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time. Mater. Sci. Eng., C 70, 796804 (2017).CrossRefGoogle ScholarPubMed
Wang, M.C., Hon, M.H., Chen, H.T., Yen, F.L., Hung, I.M., Ko, H.H., and Shih, W.J.: Process parameters on the crystallization and morphology of hydroxyapatite powders prepared by a hydrolysis method. Metall. Mater. Trans. A 44, 33443352 (2013).CrossRefGoogle Scholar
Jokic, B., Mitric, M., Radmilovic, V., Drmanic, S., Petrovic, R., and Janackovic, D.: Synthesis and characterization of monetite and hydroxyapatite whiskers obtained by a hydrothermal method. Ceram. Int. 37, 167173 (2011).10.1016/j.ceramint.2010.08.032CrossRefGoogle Scholar
Mondal, S., Bardhan, R., Mondal, B., Dey, A., Mukhopadhyay, S.S., Roy, S., Guha, R., and Roy, K.: Synthesis, characterization and in vitro cytotoxicity assessment of hydroxyapatite from different bioresources for tissue engineering application. Bull. Mater. Sci. 35, 683691 (2012).CrossRefGoogle Scholar
Xu, H.X., Zeiger, B.W., and Suslick, K.S.: Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 42, 25552567 (2013).CrossRefGoogle ScholarPubMed
Qi, C., Zhu, Y.J., Wu, C.T., Sun, T.W., Jiang, Y.Y., Zhang, Y.G., Wu, J., and Chen, F.: Sonochemical synthesis of hydroxyapatite nanoflowers using creatine phosphate disodium salt as an organic phosphorus source and their application in protein adsorption. RSC Adv. 6, 96869692 (2016).10.1039/C5RA26231CCrossRefGoogle Scholar
Wong, K.H., Li, G.Q., Li, K.M., Razmovskinaumovski, V., and Chan, K.: Optimisation of Pueraria isoflavonoids by response surface methodology using ultrasonic-assisted extraction. Food Chem. 231, 231237 (2017).CrossRefGoogle ScholarPubMed
Sadat-Shojai, M., Khorasani, M-T., Dinpanah-Khoshdargi, E., and Jamshidi, A.: Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 9, 75917621 (2013).CrossRefGoogle ScholarPubMed
Rouhani, P., Taghavinia, N., and Rouhani, S.: Rapid growth of hydroxyapatite nanoparticles using ultrasonic irradiation. Ultrason. Sonochem. 17, 853856 (2010).10.1016/j.ultsonch.2010.01.010CrossRefGoogle ScholarPubMed
Giardina, M.A. and Fanovich, M.A.: Synthesis of nanocrystalline hydroxyapatite from Ca(OH)2 and H3PO4 assisted by ultrasonic irradiation. Ceram. Int. 36, 19611969 (2010).CrossRefGoogle Scholar
Liu, H-L. and Hsieh, C-M.: Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation. Ultrason. Sonochem. 16, 431438 (2009).CrossRefGoogle ScholarPubMed
Tatake, P.A. and Pandit, A.B.: Modelling and experimental investigation into cavity dynamics and cavitational yield: Influence of dual frequency ultrasound sources. Chem. Eng. Sci. 57, 49874995 (2002).CrossRefGoogle Scholar
Deng, S.T., Yu, H., Liu, D., and Bi, Y.G.: Comparison of morphology and phase composition of hydroxyapatite nanoparticles sonochemically synthesized with dual- or single-frequency ultrasonic reactor. Appl. Phys. A 123, 642 (2017).10.1007/s00339-017-1243-4CrossRefGoogle Scholar
Zeng, R.H., Qiu, T.Q., and Lu, H.Q.: Increasing extraction of traditional Chinese medicine with cavitation using dual-frequency ultrasound. Tech. Acoust. 24, 219222 (2005).Google Scholar
Zhang, X.: Study on the mechanism and extraction of active ingredients from Pueraria Hoot by dual-frequency ultrasound. Sci. Technol. Food Ind. 23, 2326 (2006).Google Scholar
Holzwarth, U. and Gibson, N.: The Scherrer equation versus the ’Debye–Scherrer equation’. Nat. Nanotechnol. 6, 534 (2011).10.1038/nnano.2011.145CrossRefGoogle ScholarPubMed
Kavitha, M., Subramanian, R., Vinoth, K.S., Narayanan, R., Venkatesh, G., and Esakkiraja, N.: Optimization of process parameters for solution combustion synthesis of Strontium substituted Hydroxyapatite nanocrystals using design of experiments approach. Powder Technol. 271(Feb 2015), 167181 (2014).CrossRefGoogle Scholar
Jankoviæ, A., Erakoviæ, S., Mitriæ, M., Matiæ, I.Z., Juraniæ, Z.D., Tsui, G.C.P., Tang, C-y., Miškoviæ-Stankoviæ, V., Rhee, K.Y., and Park, S.J.: Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid. J. Alloys Compd. 624, 148157 (2015).CrossRefGoogle Scholar
Castro, F., Kuhn, S., Jensen, K., Ferreira, A., Rocha, F., Vicente, A., and Teixeira, J.A.: Continuous-flow precipitation of hydroxyapatite in ultrasonic microsystems. Chem. Eng. J. 215–216, 979987 (2013).CrossRefGoogle Scholar
Sadat-Shojai, M., Khorasani, M.T., and Jamshidi, A.: Hydrothermal processing of hydroxyapatite nanoparticles—A Taguchi experimental design approach. J. Cryst. Growth 361, 7384 (2012).CrossRefGoogle Scholar
Barbosa, M.C., Messmer, N.R., Brazil, T.R., Marciano, F.R., and Lobo, A.O.: The effect of ultrasonic irradiation on the crystallinity of nano-hydroxyapatite produced via the wet chemical method. Mater. Sci. Eng., C 33, 26202625 (2013).10.1016/j.msec.2013.02.027CrossRefGoogle ScholarPubMed
Poinern, G.E., Brundavanam, R.K., Mondinos, N., and Jiang, Z.T.: Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method. Ultrason. Sonochem. 16, 469474 (2009).CrossRefGoogle ScholarPubMed
Bensalah, H., Bekheet, M.F., Younssi, S.A., Ouammou, M., and Gurlo, A.: Hydrothermal synthesis of nanocrystalline hydroxyapatite from phosphogypsum waste. J. Environ. Chem. Eng. 6, 13471352 (2018).CrossRefGoogle Scholar
Canillas, M., Rivero, R., García-Carrodeguas, R., Barba, F., and Rodríguez, M.A.: Processing of hydroxyapatite obtained by combustion synthesis. Bol. Soc. Esp. Ceram. Vidrio 56, 4752 (2017).10.1016/j.bsecv.2017.05.002CrossRefGoogle Scholar
Suslick, K.S. and Price, G.J.: Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 29, 2934 (1999).10.1146/annurev.matsci.29.1.295CrossRefGoogle Scholar
Yang, Y.H., Liu, C.H., Liang, Y.H., Lin, F.H., and Wu, K.C.W.: Hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pH-responsive release properties for intracellular drug delivery. J. Mater. Chem. B 1, 24472450 (2013).CrossRefGoogle Scholar
Bakan, F., Lacin, O., and Sarac, H.: A novel low temperature sol–gel synthesis process for thermally stable nano crystalline hydroxyapatite. Powder Technol. 233, 295302 (2013).CrossRefGoogle Scholar
Wijesinghe, W.P.S.L., Mantilaka, M.M.M.G.P.G., Rajapakse, R.M.G., Pitawala, H.M.T.G.A., Premachandra, T.N., Herath, H.M.T.U., Rajapakse, R.P.V.J., and Wijayantha, K.G.U.: Urea-assisted synthesis of hydroxyapatite nanorods from naturally occurring impure apatite rocks for biomedical applications. RSC Adv. 7, 2480624812 (2017).CrossRefGoogle Scholar
Chen, Y.Q., Xing, X.F., and Gao, W.M.: Synthesis of spherical nano-hydroxyapatite by hydrothermal method with L-lysine template. Key Eng. Mater. 633, 1720 (2014).CrossRefGoogle Scholar
Utara, S. and Klinkaewnarong, J.: Sonochemical synthesis of nano-hydroxyapatite using natural rubber latex as a templating agent. Ceram. Int. 41(10, Part B), 1486014867 (2015).CrossRefGoogle Scholar
Sun, J., Zheng, X., Hui, L., Fan, D., Song, Z., Ma, H., Hua, X., and Hui, J.: Monodisperse selenium-substituted hydroxyapatite: Controllable synthesis and biocompatibility. Mater. Sci. Eng., C 73, 596 (2017).CrossRefGoogle ScholarPubMed
Sun, Y., Wu, X., Chen, L., and Luo, L.: Synthesis and cytotoxicity of N,N′-dibisphosphonate ethylenediamine derivatives and platinum(II) complexes with high binding property to hydroxyapatite. Inorg. Chim. Acta 457, 225243 (2016).Google Scholar
Palanivelu, R. and Ruban, K.A.: Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite. Spectrochim. Acta, Part A 127, 434 (2014).CrossRefGoogle ScholarPubMed
Tank, K.P., Chudasama, K.S., Thaker, V.S., and Joshi, M.J.: Pure and zinc doped nano-hydroxyapatite: Synthesis, characterization, antimicrobial and hemolytic studies. J. Cryst. Growth 401, 474479 (2014).CrossRefGoogle Scholar
Uskokoviæ, V. and Desai, T.A.: Phase composition control of calcium phosphate nanoparticles for tunable drug delivery kinetics and treatment of osteomyelitis. II. Antibacterial and osteoblastic response. J. Biomed. Mater. Res., Part A 101, 14161426 (2013).CrossRefGoogle Scholar
Qin, J., Zhong, Z., and Ma, J.: Biomimetic synthesis of hybrid hydroxyapatite nanoparticles using nanogel template for controlled release of bovine serum albumin. Mater. Sci. Eng., C 62, 377 (2016).CrossRefGoogle ScholarPubMed
Lai, W., Chen, C., Ren, X., Lee, I.S., Jiang, G., and Kong, X.: Hydrothermal fabrication of porous hollow hydroxyapatite microspheres for a drug delivery system. Mater. Sci. Eng., C 62, 166172 (2016).CrossRefGoogle ScholarPubMed
Thomas, S.C., Sharma, H., Rawat, P., Verma, A.K., Leekha, A., Kumar, V., Tyagi, A., Gurjar, B.S., Iqbal, Z., and Talegaonkar, S.: Synergistic anticancer efficacy of bendamustine hydrochloride loaded bioactive hydroxyapatite nanoparticles: In vitro, ex vivo and in vivo evaluation. Colloids Surf., B 146, 852860 (2016).CrossRefGoogle ScholarPubMed
Cho, J.S., Lee, J.C., and Rhee, S.H.: Effect of precursor concentration and spray pyrolysis temperature upon hydroxyapatite particle size and density. J. Biomed. Mater. Res., Part B 104, 422 (2016).CrossRefGoogle ScholarPubMed
Supplementary material: File

Deng et al. supplementary material

Figure S1

Download Deng et al. supplementary material(File)
File 220.4 KB