Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T20:12:18.282Z Has data issue: false hasContentIssue false

Preparation and isolation of gold nanoparticles coated with a stabilizer and sol-gel compatible agent

Published online by Cambridge University Press:  31 January 2011

R. Trbojevich
Affiliation:
Laboratorio de Materiales Cerámicos, FCEIyA, IFIR, UNR, Av. Pellegrini 250, 2000, Rosario, Argentina
N. Pellegri
Affiliation:
Laboratorio de Materiales Cerámicos, FCEIyA, IFIR, UNR, Av. Pellegrini 250, 2000, Rosario, Argentina
A. Frattini
Affiliation:
Laboratorio de Materiales Cerámicos, FCEIyA, IFIR, UNR, Av. Pellegrini 250, 2000, Rosario, Argentina
O. de Sanctis
Affiliation:
Laboratorio de Materiales Cerámicos, FCEIyA, IFIR, UNR, Av. Pellegrini 250, 2000, Rosario, Argentina
P. J. Morais
Affiliation:
Departamento de Engenharia de Materiais/INESC, Instituto Superior Técnico, Av. Rovisco Pais, 1000–049 Lisboa, Portugal
R. M. Almeida
Affiliation:
Departamento de Engenharia de Materiais/INESC, Instituto Superior Técnico, Av. Rovisco Pais, 1000–049 Lisboa, Portugal
Get access

Abstract

In this work an attractive technique is presented that brings together the advantage of the micelle reverse technique to control the particle growth and the efficiency of the amine silanes as sol-gel-compatible surface modifiers. The diamino silane is far from being a passive agent in the formation process of the gold particle; it strongly modifies the growth of the gold particle in the reverse micelle. The diamino silane allows the gold particles to keep their individual properties unaltered throughout the process, which ends with their incorporation into a SiO2–TiO2 sol-gel thin film.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kadono, K., Sakaguchi, T., Miya, M., Matsuoka, J., Fukumi, T., and Tanaka, H., J. Mater. Sci.: Mater. Electron. 4, 59 (1993).Google Scholar
2.Brusatin, G., Guglielmi, M., Innocenzi, P., Martucci, A., and Scarinci, G., J. Electroceram. 4, 151 (2000)CrossRefGoogle Scholar
3.Kreibig, U.J., Phys. France C2 97 (1977).Google Scholar
4.Perez, A., Treilleux, M., Capra, T., and Griscom, D.L., J. Mater. Res. 2, 910 (1987).CrossRefGoogle Scholar
5.Nasu, H., Tsunetomo, K., Tokumitsu, Y., and Osaka, Y., Jpn. J. Appl. Phys. 28, L862 (1989).CrossRefGoogle Scholar
6.Kay, E.Z., Phys. D. 3, 251 (1986).CrossRefGoogle Scholar
7.Noguchi, T., Hayashi, S., Kawahara, M., Gotoh, K., Yamaguchi, Y., and Deki, S., Appl. Phys. Lett. 62, 1769 (1993).CrossRefGoogle Scholar
8.Nogami, M., Nagasaka, K., and Kato, E., J. Am. Ceram. Soc. 73 2097 (1990).CrossRefGoogle Scholar
9.Pellegri, N., Trbojevich, R., Sanctis, O. de, and Kadono, K.. J. SolGel Sci. Technol. 8, 1023 (1997).Google Scholar
10.Henglein, A.J., Phys. Chem. 97, 5457 (1993).CrossRefGoogle Scholar
11.Torigoe, K. and Esumi, K., Langmuir 8, 59 (1992).CrossRefGoogle Scholar
12.Yonezawa, Y., Sato, T., Ohno, M., and Hada, H.J., Chem. Soc.,Faraday Trans. 83, 1559 (1987).CrossRefGoogle Scholar
13.Quinn, M. and Mills, G., J. Phys. Chem. 98, 9840 (1994).CrossRefGoogle Scholar
14.Deki, S., Aoi, Y., Yanagimoto, Y., Ishii, K., Akamatsu, K., Mizuhata, M., and Kajinami, A., J. Mater. Chem. 12, 4618 (1996).Google Scholar
15.Matsuoka, J., Mizutani, R., Nasu, H., and Kamiya, K., J. Ceram. Soc. Jpn. 100, 599 (1992).CrossRefGoogle Scholar
16.Kozuka, H. and Sakka, S., Chem. Mater. 5, 222 (1993).CrossRefGoogle Scholar
17.Matsuoka, J., Mizutani, R., Kaneko, S., Nasu, H., Kamiyia, K., Kadono, K., Sakaguchi, T., and Miya, M., J. Ceram. Soc. Jpn. 101, 53 (1993).CrossRefGoogle Scholar
18.Tanashshi, I. and Mitsutu, T., J. Non-Cryst. Solids 181, 77 (1995).CrossRefGoogle Scholar
19.Yanagi, H., Mashiko, S., Nagahara, L.A., and Tokumoto, H., Chem. Mater. 10, 1258 (1998).CrossRefGoogle Scholar
20.Spanhel, L., Mennig, M., and Schmidt, H., Bol. Soc. Esp. Ceram. Vid. 31-C 7, 9 (1992).Google Scholar
21.Gacoin, T., Chaput, F., and Boilot, J., J. Sol Gel Sci. Technol. 2, 679 (1994).CrossRefGoogle Scholar
22.Nakao, Y. and Kaeriyama, K., J. Colloid Interface Sci. 110, 82 (1986).CrossRefGoogle Scholar
23.Krasnasky, R., Yamamura, S., and Thomas, J.K., Langmuir 7, 2881 (1991).CrossRefGoogle Scholar
24.Taleb, A., Petit, C., and Pileni, M.P., J. Phys. Chem. B 102, 2214 (1998).CrossRefGoogle Scholar
25.Lin, X.M., Wang, G.M., Sorensen, C.M., and Klabunde, K.J., J. Phys. Chem. B ,103, 5492 (1999).Google Scholar
26.Wilcoxon, J.P., Williamson, R.L., and Baughman, R., J. Chem. Phys. 98, 9933 (1993).CrossRefGoogle Scholar
27.Alvarez, M.M., Khoury, J.T., Schaaff, T.G., Shafigullin, M., Vezmar, I., and Whetten, R.L., Chem. Phys. Lett. 266, 91 (1997).CrossRefGoogle Scholar
28.Reifsnyder, S.N. and Lamb, H.H., J. Phys. Chem. B 103, 321 (1999).CrossRefGoogle Scholar
29.Counio, G., Esnouf, S., Gacoin, T., and Boilot, J.P., J. Phys. Chem. 100, 20021 (1996).CrossRefGoogle Scholar
30.Hirai, T., Okubo, H., and Komaswa, I., J. Mater. Chem. 10, 2592 (2000).CrossRefGoogle Scholar
31.Sanctis, O. de and Kadono, K., Internal Report ONRI (AIST), Department of Optical Materials, Osaka, Japan, 1994.Google Scholar
32.Fardad, M. Al, Ph.D. Thesis, Imperial College, London, U.K., (1995).Google Scholar
33.Link, S. and El-Sharef, M.A., J. Phys. Chem. B 103, 4212 (1999).CrossRefGoogle Scholar
34.Pileni, M.P., J. Phys. Chem. 97, 6961 (1993).CrossRefGoogle Scholar
35.Mossieri, S., Henglein, A., and Janata, E., J. Phys. Chem. 93, 6791 (1989).CrossRefGoogle Scholar
36.West, A.R., Solid State Chemistry and Its Applications (John Wiley & Sons, New York, 1992), p. 173.Google Scholar