Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T02:53:43.027Z Has data issue: false hasContentIssue false

Pop-in events induced by spherical indentation in compound semiconductors

Published online by Cambridge University Press:  03 March 2011

J.E. Bradby*
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia
J.S. Williams
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia
M.V. Swain
Affiliation:
Biomaterials Science Research Unit, Department of Mechanical and Mechatronic Engineering, and Faculty of Dentistry, The University of Sydney, Eveleigh, NSW 1430, Australia
*
a) Address all correspondence to this author.e-mail: [email protected]
Get access

Abstract

Details of the elastic–plastic transitions in crystalline compound semiconductors have been examined using spherical indentation. Two cubic (InP and GaAs) and two hexagonally structured semiconductors (ZnO and GaN) have been studied. A series of indentations have been made in each material at a number of different loads. The resulting load–penetration curves exhibited one or more discontinuities on loading (so called pop-in events). The load at which the initial pop-in event occurred has been measured along with the corresponding indenter extension. The elastic and elastic–plastic response of each material to spherical indentation has been calculated and compared with the experiment. By taking the difference between the elastic and elastic–plastic penetration depths, it has been found that the pop-in extension at each load could be predicted for each material. The detailed deformation behavior of each of the materials during indentation has also been discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gerberich, W.W., Nelson, J.C., Lilleodden, E.T., Anderson, P. and Wyrobek, J.T., Ann. Math. 44 3585 (1996).Google Scholar
2.Asif, S.A.S. and Pethica, J.B., Philos. Mag. A 76 1105 (1997).CrossRefGoogle Scholar
3.Bahr, D.F., Wilson, D.E. and Crowson, D.A., J. Mater. Res. 14 2269 (1999).CrossRefGoogle Scholar
4.Kiely, J.D., Jarausch, K.F., Houston, J.E. and Russell, P.E., J. Mater. Res. 14 2219 (1999).CrossRefGoogle Scholar
5.Tromas, C., Girard, J.C., Audurier, V. and Woirgard, J., J. Mater. Sci. 34 5337 (1999).CrossRefGoogle Scholar
6.Gouldstone, A., Koh, H.J., Zeng, K.Y., Giannakopoulos, A.E. and Suresh, S., Acta Mater. 28 2277 (2000).CrossRefGoogle Scholar
7.Kramer, D.E., Yoder, K.B. and Gerberich, W.W., Philos. Mag. A 81 2033 (2001).CrossRefGoogle Scholar
8.Page, T.F., Riester, L. and Hainsworth, S.V. in Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 113.Google Scholar
9.Vliet, K.J.V., Li, J., Yip, S. and Suresh, S., Phys. Rev. B 67 104105 2003.CrossRefGoogle Scholar
10.Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V. and Munroe, P., Appl. Phys. Lett. 78 3235 (2001).CrossRefGoogle Scholar
11.Bradby, J.E., Kucheyev, S.O., Williams, J.S., Wong-Leung, J., Swain, M.V., Munroe, P., Li, G. and Phillips, M.R., Appl. Phys. Lett. 80 383 (2002).CrossRefGoogle Scholar
12.Bradby, J.E., Kucheyev, S.O., Williams, J.S., Jagadish, C., Swain, M.V., Munroe, P. and Phillips, M.R., Appl. Phys. Lett. 80 4537 (2002).CrossRefGoogle Scholar
13.Hainsworth, S.V., Whithead, A.J. and Page, T.F. in Plastic Deformation of Ceramics, edited by Bradt, R.C., Brookes, C.A., and Routbort, J.L. (Plenum Press, New York, 1995), pp. 173184.CrossRefGoogle Scholar
14.Yu, G., Ishikawa, H., Egawa, T., Soga, T., Watanabe, J., Jimbo, T. and Umeno, M., J. Cryst. Growth 189/190 701 (1998).CrossRefGoogle Scholar
15.Williams, J.S., Chen, Y., Wong-Leung, J., Kerr, A. and Swain, M.V.J. Mater. Res. 14, 2338 (1999).CrossRefGoogle Scholar
16.Kucheyev, S.O., Bradby, J.E., Williams, J.S., Jagadish, C., Toth, M., Phillips, M.R. and Swain, M.V., Appl. Phys. Lett. 77 3373 (2000).CrossRefGoogle Scholar
17.Kucheyev, S.O., Bradby, J.E., Williams, J.S., Jagadish, C. and Swain, M.V., Appl. Phys. Lett. 80 956 (2002).CrossRefGoogle Scholar
18.Bourhis, E.L. and Patriarche, G., Philos. Mag. Lett. 79 805 (1999).CrossRefGoogle Scholar
19.Patriarche, G. and LeBourhis, E., Philos. Mag. A 80 2899 (2000).CrossRefGoogle Scholar
20.Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V. and Munroe, P., Appl. Phys. Lett. 77 3749 (2000).CrossRefGoogle Scholar
21.Ning, X.J., Perez, T. and Pirouz, P., Philos. Mag. A 72 837 (1995).CrossRefGoogle Scholar
22.Yonenaga, I. and Suzuki, T., Philos. Mag. Lett. 80 511 (2000).CrossRefGoogle Scholar
23.Largeau, L., Patriarche, G., Bourhis, E.L., Rivière, A. and Rivière, J.P.Philos. Mag. 83, 1653 (2003).CrossRefGoogle Scholar
24.Bourhis, E.L., Patriarche, G., Riviere, J.P. and Zozime, A., Phys. Status Solidi A 161 415 (1997).3.0.CO;2-0>CrossRefGoogle Scholar
25.Weyher, J.L., Albrecht, M., Wosinski, T., Nowak, G., Strunk, H.P. and Porowski, S., Mater. Sci. Eng. B 80 318 (2001).CrossRefGoogle Scholar
26.Malzbender, J., J. Eur. Ceran. Soc. 23 1355 (2003).CrossRefGoogle Scholar
27.Johnson, K.L.Contact Mechanics (Cambridge University Press, Cambridge, 1985).CrossRefGoogle Scholar
28.Field, J.S. and Swain, M.V., J. Mater. Res. 8 297 (1993).CrossRefGoogle Scholar
29.Weppelmann, E.R., Field, J.S. and Swain, M.V., J. Mater. Res. 8 830 (1993).CrossRefGoogle Scholar
30.Sneddon, I.N., Int. J. Eng. Sci. 3 47 (1965).CrossRefGoogle Scholar
31.Bradby, J.E., Williams, J.S., Wong-Leung, J., Kucheyev, S.O., Swain, M.V. and Munroe, P., Philos. Mag. Lett. 82 1931 (2002).CrossRefGoogle Scholar
32.Ning, X.J., Chien, F.R., Pirouz, P., Yang, J.W. and Khan, M.A., J. Mater. Res. 11 580 (1996).CrossRefGoogle Scholar
33.Lorenz, D., Zeckzer, A., Hilpert, U., Grau, P., Johansen, H. and Leipner, H.S., Phys. Rev. B 67 172101 (2003).CrossRefGoogle Scholar
34.Kucheyev, S.O., Bradby, J.E., Williams, J.S., Jagadish, C., Swain, M.V. and Li, G., Appl. Phys. Lett. 78 156 (2001).CrossRefGoogle Scholar
35.Nowak, R., Li, C.L. and Swain, M.V., Mater. Sci. Eng. A 253 167 (1999).CrossRefGoogle Scholar