Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T22:31:29.476Z Has data issue: false hasContentIssue false

Oxidation kinetics of large nickel particles

Published online by Cambridge University Press:  31 January 2011

Richard Karmhag
Affiliation:
Department of Materials Science, Uppsala UniversityP.O. Box 534, S-751 21 Uppsala, Sweden
Gunnar A. Niklasson
Affiliation:
Department of Materials Science, Uppsala UniversityP.O. Box 534, S-751 21 Uppsala, Sweden
Mats Nygren
Affiliation:
Department of Inorganic Chemistry, Arrhenius Laboratory, Stockholm UniversityS-10691 Stockholm, Sweden
Get access

Abstract

Oxidation of polycrystalline nickel particles with an approximate median diameter of 158 μm has been studied by thermogravimetric measurements in the temperature range 773–1473 K. The oxidation was found to be thermally activated with an apparent activation energy of about 1.9 eV at temperatures below 1073 K and 1.2 eV at higher temperatures. Our data showed the qualitative features expected for oxidation of spherical metal particles. The kinetics was compared with a homogenous field coupled-currents theory for oxidation of spherical metal particles. Calculations using a median particle size or a distribution of particle sizes could only give a satisfactory fit to part of the experimental data. Possible explanations for the deviations in terms of space charge, grain boundary diffusion, grain growth, and sintering are discussed in this paper. Scanning electron microscopy studies of the particles after oxidation showed that a large difference exists in the surface structure and the degree of sintering between the particles oxidized at low and high temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Smeltzer, W.W. and Young, D.J., Progr. Solid State Chem. 10, 17 (1975).CrossRefGoogle Scholar
2.Fromhold, A.T. Jr, Theory of metal oxidation (North-Holland, Amsterdam, 1976) Vol. 1.Google Scholar
3.Atkinson, A., Rev. Mod. Phys. 57, 437 (1985).CrossRefGoogle Scholar
4.Fehlner, F.P. and Mott, N.F., Oxid. Met. 2, 59 (1970).CrossRefGoogle Scholar
5.Kofstad, P., High temperature corrosion (Elsevier, Barking, 1988).Google Scholar
6.Lawless, K.R., Rep. Prog. Phys. 37, 231 (1974).CrossRefGoogle Scholar
7.Dignam, M.J., Young, D.J., and Goad, D.G.W, J. Phys. Chem. Solids 34, 1227 (1973).Google Scholar
8.Cabrera, N. and Mott, N.F., Rep. Prog. Phys. 12, 163 (19481949).CrossRefGoogle Scholar
9.Gesmundo, F., in Diffusion in Solids and High Temperature Oxidation of Metals, edited by Nowotny, J. (Australian Nuclear Science & Technology Organization, Lucas Heights, 1992). Vol. 21 & 22, p. 57.Google Scholar
10.Fehlner, F.P., Low-Temperature Oxidation: The Role of Virteous Oxides (Wiley, New York, 1986).Google Scholar
11.Carter, R.E., J. Chem. Phys. 34, 2010 (1960).CrossRefGoogle Scholar
12.Fromhold, A.T. Jr, J. Phys. Chem. Solids, 49, 1159 (1988).Google Scholar
13.Karmhag, R., Niklasson, G.A., and Nygren, M., J. Appl. Phys. 85, 1 (1999).Google Scholar
14.Starck, H.C. GmbH & Co. KG (private communication, 1998).Google Scholar
15.Köhl, M., Gindele, K., Frei, U., and Häuselmann, T., Sol. Energy Mater. 19, 257 (1989).CrossRefGoogle Scholar
16.Aylward, G.H. and Findlay, T.J.V, SI Chemical Data (John Wiley & Sons, Hong Kong, 1974).Google Scholar
17. Powder Diffraction File, Card No. 47–1049, International Center for Diffraction Data (1991).Google Scholar
18.Graham, M.J. and Cohen, M., J. Electrochem. Soc. 119, 879 (1972).CrossRefGoogle Scholar
19.Rhines, F.N. and Connell, R.G., J. Electrochem. Soc. 124, 1122 (1977).Google Scholar
20.Atkinson, A., Taylor, R.I., and Hughes, A.E., Philos. Mag. A 45, 823 (1982).Google Scholar
21.Atkinson, A., Taylor, R.I., and Goode, P.D., Oxid. Met. 13, 519 (1979).Google Scholar
22.Atkinson, A. and Taylor, R.I., Philos. Mag. A 43, 979 (1981).Google Scholar
23.Catchart, J.V., Petersen, G.F., and Sparks, C.J., J. Electrochem. Soc. 116, 664 (1969).Google Scholar
24.Khoi, N.N., Smeltzer, W.W., and Embury, J.D., J. Electrochem. Soc. 122, 1495 (1975).CrossRefGoogle Scholar
25.Mitra, S., Tatti, S.R., and Stark, J.P., Thin Solid Films 177, 171 (1989).Google Scholar
26.Atkinson, A., Philos. Mag. B 55, 637 (1987).Google Scholar
27.Graham, M.J., Sproule, G.I., Caplan, D., and M. Cohen J. Electrochem. Soc. 119, 883 (1972).Google Scholar
28.Atkinson, H.V., Mater. Sci. Technol. 4, 1052 (1988).CrossRefGoogle Scholar
29.Caplan, D., Graham, M.J., and Cohen, M., J. Electrochem. Soc. 119, 1205 (1972).CrossRefGoogle Scholar
30.Perrow, J.M., Smeltzer, W.W., and Embury, J.D., Acta Metall. 16, 1209 (1968).Google Scholar
31.Hobbs, L.W., in High Temperature Corrosion, edited by Rapp, R.A. (National Association of Corrosion Engineers, Houston, Texas, 1983), p. 76.Google Scholar
32.Gulbransen, E.A. and Andrew, K.F., J. Electrochem. Soc. 101, 128 (1954).Google Scholar
33.Herchl, R., Khoi, N.N., Homma, T., and Smeltzer, W.W., Oxid. Met. 4, 35 (1972).CrossRefGoogle Scholar
34.Kofstad, P., Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (Wiley, New York, 1972).Google Scholar
35.Gulbransen, E.A. and Andrew, K.F., J. Electrochem. Soc. 104, 451 (1957).Google Scholar
36.Fueki, K. and Wagner, J.B., J. Electrochem Soc. 112, 384 (1965).Google Scholar
37.Zima, G.E., Trans. ASM 49, 924 (1957).Google Scholar
38.Berry, L. and Paidassi, J., Compt. Rend. Acad. Sci. Paris Serie C 225, 2253 (1962).Google Scholar
39.Baur, J.P., Bartlett, R.W., Ong, J.N. Jr, and Fassell, W.M. Jr, J. Electrochem. Soc. 110, 185 (1963).CrossRefGoogle Scholar
40.Frederick, S.F. and Cornet, I., J. Electrochem. Soc. 102, 285 (1955).Google Scholar
41.Rosa, C.J., Corros. Sci. 22, 1081 (1982).Google Scholar
42.Sartell, J.D. and Li, C.H., J. Inst. Metals 90, 92 (1961).Google Scholar
43.Atkinson, A. and Taylor, R.I., Philos. Mag. A 39, 581 (1979).CrossRefGoogle Scholar