Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T22:46:25.712Z Has data issue: false hasContentIssue false

Optical and electronic properties of nitrogen-implanted diamond-like carbon films

Published online by Cambridge University Press:  03 March 2011

G.L. Doll
Affiliation:
General Motors Research Laboratories, Warren, Michigan 48090–9055
J.P. Heremans
Affiliation:
General Motors Research Laboratories, Warren, Michigan 48090–9055
T.A. Perry
Affiliation:
General Motors Research Laboratories, Warren, Michigan 48090–9055
J.V. Mantese
Affiliation:
General Motors Research Laboratories, Warren, Michigan 48090–9055
Get access

Abstract

Optical and electrical measurements on nitrogen ion-implanted diamond-like carbon films are presented. Raman scattering measurements, which probe the crystallinity of the film surface, indicate that nitrogen implantation reduces the finite crystallographic order in the pristine carbon films. The absence of molecular vibrations in the infrared absorption spectra of the films argues against a polymeric structure of the ion-implanted films. Spectroscopic ellipsometry experiments determine the change in the optical constants of the carbon film due to nitrogen implantation. Electrical de conductivity measurements are interpreted within the framework of a schematic density of states picture of graphitic τ-electrons in an amorphous carbon system. Taken collectively, the optical and electrical measurements suggest that nitrogen implantation increases the density of localized states within the 1.5 eV bandgap of the quasi-amorphous carbon film, thereby reducing the bandgap and increasing the conductivity of the nitrogen-implanted films.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Liu, A. Y. and Cohen, M. L., Science 245, 841 (1989).CrossRefGoogle Scholar
2Han, H-X. and Feldman, B. J., Solid State Commun. 63, 921 (1988), Ref. 6.CrossRefGoogle Scholar
3Jones, D. J. and Stewart, A. D., Philos. Mag. B 46, 423 (1982).CrossRefGoogle Scholar
4Han, H-X. and Feldman, B. J., Solid State Commun. 63, 921 (1988).CrossRefGoogle Scholar
5Ricci, M., Trinquecoste, M., Auguste, F., Canet, R., Delhaes, P., Guimon, C., Pfister-Guillouzo, G., Nysten, B., and Issi, J. P., J. Mater. Res. 8, 480 (1993).CrossRefGoogle Scholar
6Kajihara, S. A., Antonelli, A., Bernholc, J., and Car, R., Phys. Rev. Lett. 66, 2010 (1991).CrossRefGoogle Scholar
7Iwaki, M., Takahashi, K., and Sekiguchi, A., J. Mater. Res. 5, 2562 (1990); Wielunski, L. S., Pollock, J. T. A., and Farrelly, M., in Fundamentals of Beam-Solid Interactions and Transient Thermal Processing, edited by Aziz, M. J., Rehn, L. E., and Stritzker, B. (Mater. Res. Soc. Symp. Proc. 100, Pittsburgh, PA, 1988), p. 213.CrossRefGoogle Scholar
8Amir, O. and Kalish, R., Diamond and Rel. Mater. 1, 364 (1992).CrossRefGoogle Scholar
9Crook, A. W., J. Opt. Soc. Am. 38, 954 (1948).CrossRefGoogle Scholar
10Dresselhaus, M. S., Dresselhaus, G., Sugihara, K., Spain, I. L., and Goldberg, H. A., Graphite Fibers and Filaments (Springer-Verlag, Berlin, 1988), p. 98.CrossRefGoogle Scholar
11Tauc, J., in Optical Properties of Solids, edited by Abeles, F. (North-Holland, Amsterdam, 1972), p. 277.Google Scholar
12Alterovitz, S. A., Savvides, N., Smith, F. W., and Woollam, J. A., in Handbook of Optical Constants of Solids II, edited by Palik, E. D. (Academic Press, San Diego, CA, 1991), p. 837.Google Scholar
13Mott, N. F. and Davis, E. A., Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1971), p. 251.Google Scholar