Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T01:32:33.521Z Has data issue: false hasContentIssue false

Nanocomposite aerogels: The SiO2–Al2O3 system

Published online by Cambridge University Press:  03 March 2011

Sridhar Komarneni
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
Rustum Roy
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
Ulagaraj Selvaraj
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
Prakash B. Malla
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
Else Breval
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
Get access

Abstract

Monolithic nanocomposite aerogels of two aluminosilicate compositions have been prepared and characterized by different techniques. The results show that high surface area and mesoporosity can be preserved in the above nanocomposite aerogels by heating at 1000 °C, unlike the single component aerogels. The presence of alumina as a second phase prevented their densification which resulted in surface areas on the order of 500–600 m2/g and mesopores of about 5–6 nm in diameter after heat treatment at 1000 °C. These novel nanocomposite aerogels are expected to find applications at high-temperatures in separations, insulation, catalysis, etc.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ulrich, D. R., Chemical and Engineering News (January 1, 1990), pp. 2840.Google Scholar
2Roy, R., in Chemical Processing of Advanced Materials, edited by Hench, L. L. and West, J. K. (John Wiley and Sons, New York, 1992), pp. 10231033.Google Scholar
3Hoffman, D., Roy, R., and Komarneni, S., J. Am. Ceram. Soc. 67, 468 (1984).CrossRefGoogle Scholar
4Suwa, Y., Roy, R., and Komarneni, S., J. Am. Ceram. Soc. 68, C238 (1985).CrossRefGoogle Scholar
5Roy, R., Suwa, Y., and Komarneni, S., Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (1986), Chap. 24, pp. 247258.Google Scholar
6Suwa, Y., Komarneni, S., and Roy, R., J. Mater. Sci. Lett. 5, 21 (1986).CrossRefGoogle Scholar
7Roy, R., Komarneni, S., and Yarbrough, W., Science of Ceramic Chemical Processing, edited by MacKenzie, J. D. and Ulrich, D. R. (1988), pp. 571588.Google Scholar
8Kazakos-Kijowski, A., Komarneni, S., and Roy, R., in Better Ceramics Through Chemistry III, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), pp. 245250.Google Scholar
9Selvaraj, U., Liu, C. L., Komarneni, S., and Roy, R., J. Am. Ceram. Soc. 74, 1378 (1991).Google Scholar
10Komarneni, S., Proc. 1989 Int. Gas Research Conf. (Government Institutes Inc., Rockville, MD, 1990), pp. 922928.Google Scholar
11Roy, R. and Komarneni, S., U.S. Patent No. 4828031 (1989).Google Scholar
12Komarneni, S., Kijowski, A. K., and Roy, R., U.S. Patent No. 5 030592 (1991).Google Scholar
13The Seventh Seminar on Frontier Technology-Nano Hybridization of Ceramics and Creation of New Functions, The Association for the Progress of New Chemistry, February 7–10, 1989, Oiso, Japan.Google Scholar
14Yamanaka, S., Am. Ceram. Soc. Bull. 70, 1056 (1991).Google Scholar
15Niihara, K. and Nakahira, A., Proc. Japanese Ceram. Soc, 404417 (1991).Google Scholar
16Roy, R. and Osborn, E. F., Am. Mineral. 39, 853 (1954).Google Scholar
17Roy, D. M. and Roy, R., Am. Mineral. 39, 957 (1954).Google Scholar
18Roy, R., J. Am. Ceram. Soc. 39, 145 (1956).Google Scholar
19Gesser, H. D. and Goswami, P. C., Chem. Rev. 89, 765 (1989).CrossRefGoogle Scholar
20Kistler, S. S., Nature (London) 12, 741 (1931).CrossRefGoogle Scholar
21Kistler, S. S., U.S. Patent 2093 454 (1937).Google Scholar
22Kistler, S. S., U.S. Patent 2188007 (1940).Google Scholar
23Cantin, M., Casse, M., Koch, L., Jouan, R., Mestreau, P., Roussell, D., Bonnin, F., Moutel, J., and Teichner, S. J., Nucl. Instrum. Methods 118, 177 (1974).Google Scholar
24Rubin, M. and Lampert, C. M., Sol. Energy Mater. 1, 393 (1983).CrossRefGoogle Scholar
25LeMay, J. D., Hopper, R. W., Hrubesh, L. W., and Pekala, R. W., Mater. Res. Soc. Bull. XV, 19 (1990).Google Scholar
26Aerogels, edited by Fricke, J. (Springer-Verlag, New York), p. 206.Google Scholar
27Proc. 2nd Int. Symp. on Aerogels, edited by Vachen, R., Phalippou, J., Pelous, J., and Woignier, T., J. de Physique, Collogne (1989).Google Scholar
28“Aerogels”, edited by Fricke, J., J. Non. Cryst. Solids 145 (1992).Google Scholar
29Blanchard, F., Pommier, B., Reymond, J. P., and Teichner, S. J., in Preparation of Catalysts III, edited by Poncelet, G., Grante, P., and Jacobs, P. A. (Elsevier Science Publishers B. V., Amsterdam, 1983), p. 395.Google Scholar
30Sayari, A., Ghorbel, A., Pajonk, G. M., and Teichner, S. J., Bull. Soc. Chim. Fr. 1–2, 1–7, 116 (1981).Google Scholar