Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T17:57:52.637Z Has data issue: false hasContentIssue false

Morphological and structural properties of high quality YBCO thin films

Published online by Cambridge University Press:  03 March 2011

A. Cassinese
Affiliation:
Dip. Scienze Fisiche dell'Universitá Federico II di Napoli, Italy
A. Di Chiara
Affiliation:
Dip. Scienze Fisiche dell'Universitá Federico II di Napoli, Italy
F. Miletto Granozio
Affiliation:
Dip. Scienze Fisiche dell'Universitá Federico II di Napoli, Italy
S. Saiello
Affiliation:
Dip. di Ingegneria dei Materiali e della Produzione, Universitá Federico II di Napoli, Italy
U. Scotti di Uccio
Affiliation:
Dip. Scienze Fisiche dell'Universitá Federico II di Napoli, Italy
M. Valentino
Affiliation:
Dip. Scienze Fisiche dell'Universitá Federico II di Napoli, Italy
Get access

Abstract

High-quality YBCO thin films have been grown by Inverted Cylindrical Magnetron Sputtering (ICMS) on LaAlO3(100), SrTiO3(100), SrTiO3(110), and MgO(100) substrates. Transition temperatures of c-axis films exceed 90 K, and transition widths are within 1 K. Critical currents range up to 5 × 106 A/cm2 at 77 K. Structural and morphological features analyzed by x-ray diffraction and scanning electron microscopy, respectively, are found to be strongly dependent on film orientation and deposition temperature. In order to understand such dependence, a simple interpretation is proposed in terms of Gibbs energies and growth dynamics of the nucleation process.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hor, P. H., Gao, L., Meng, R. L., Huang, Z. J., Wang, Y. Q., Forster, K., Vassilious, J., Chu, C. W., Wu, M. K., Ashburn, J. R., and Torng, C. J., Phys. Rev. Lett. 58, 911 (1987); Wu, M.K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
2Barone, A. and Sarnelli, E., Physica C (1994, in press); David, B., in 1st European Training on Technologies and Industrial Applications of Superconductivity, edited by Barone, A., Morini, A., and Frunzio, L. (World Scientific, Singapore, 1991).Google Scholar
3Hontsu, S., Ishii, J., Kawai, T., and Kawai, S., Appl. Phys. Lett. 59, 2886 (1991).CrossRefGoogle Scholar
4Xi, X. X., Venkatesan, T., Li, Q., Wu, X. D., Inam, A., Chang, C.C., Ramesh, R., Hwang, D. M., Ravi, T. S., Findikoglu, A., Hemmick, D., Etemad, S., Martinez, J. A., and Wilkens, B., IEEE Trans. Magn. 27, 982 (1991).CrossRefGoogle Scholar
5Li, Y. Q., Zhao, J., Chern, C. S., Lu, P., Gallois, B., Norris, P., Kear, B., and Cosandey, F., Physica C 195, 161 (1992).CrossRefGoogle Scholar
6Wu, K. H., Juang, J. Y., Lee, C. L., Lai, T. C., Uen, T. M., Gou, Y. S., Tu, S. L., Yang, S. J., and Hsu, S. E., Physica C 195, 241 (1992).CrossRefGoogle Scholar
7Grabow, M. H. and Gilmer, G. H., Surf. Sci. 194, 333 (1988).CrossRefGoogle Scholar
8Bauer, E., Z. Kristallogr. 110, 372 (1958).CrossRefGoogle Scholar
9Geerk, J., Linker, G., and Meyer, O., Meter. Sci. Rep. 4, 193 (1989).CrossRefGoogle Scholar
10Andreone, A., Di Chiara, A., Fontana, F., Miletto Granozio, F., Peluso, G., Scotti di Uccio, U., and Valentino, M., Sov. J. Low Temp. Phys. 18, 779 (1992).Google Scholar
11Wu, X. D., Miinchausen, R. E., Foltyn, S., Estler, R. C., Dye, R. C., Garcia, A. R., Nogar, N. S., England, P., Ramesh, R., Hwang, D. M., Ravi, T. S., Chang, C. C., Venkatesan, T., Xi, X. X., Li, Q., and Inam, A., Appl. Phys. Lett. 57, 523 (1990).CrossRefGoogle Scholar
12Geerk, J., Linker, G., Meyer, O., Ratzel, F., Reiner, J., Remmel, J., Kroner, T., Henn, R., Massing, S., Brecht, E., Strehlau, B., Smithey, R., Wang, R. L., Wang, F., Siegel, M., Ritschel, C., and Raushenbach, B., Physica C 180, 11 (1991).CrossRefGoogle Scholar
13Allen, L. H., Cukauskas, E. J., Broussard, P. R., and Van Damme, P. K., IEEE Trans. Magn. 27, 1406 (1991).CrossRefGoogle Scholar
14Villagier, J. C., Moriceau, H., Boucher, H., Chicault, R., Di Cioccio, L., Jager, A., Schwerdtfeger, M., Vabre, M., and Villard, C., IEEE Trans. Magn. 27, 1552 (1991).CrossRefGoogle Scholar
15Eom, C. B., Marshall, A. F., Laderman, S. S., Jacowitz, R. D., and Geballe, T. H., Science 249, 1549 (1990).CrossRefGoogle Scholar
16Eom, C. B., Sun, J. Z., Lairson, B. M., Streiffer, S. K., Marshall, A. F., Yamamoto, K., Anlage, S. M., Bravman, J. C., and Geballe, T. H., Physica C 171, 354 (1990).CrossRefGoogle Scholar
17Ludwig, F., Hinkel, V., Shurig, T., Müller, J-P., Stösslein, U., Miiller, H-U., and Koch, H., Physica C 180, 85 (1991).CrossRefGoogle Scholar
18Inam, A., Ramesh, R., Rogers, C. T., Wilkens, B., Remschnig, K., Hart, D., and Barner, J., IEEE Trans. Magn. 27, 1603 (1991).CrossRefGoogle Scholar
19Habermeier, H-U., Beddies, G., Leibold, B., Lu, G., and Wagner, G., Physica C 180, 17 (1991).CrossRefGoogle Scholar
20Klein, N., Dahne, U., Poppe, U., Urban, N., Orbach, S., Hensen, S., Mtiller, G., and Piel, H., J. Supercond. 5, 195 (1992).CrossRefGoogle Scholar
21Tsuge, H. and Matsukura, N., IEEE Trans. Magn. 27, 1009 (1991).CrossRefGoogle Scholar
22Andreone, A., Di Chiara, A., Peluso, G., Scotti di Uccio, U., Attanasio, C., Maritato, L., Marra, S., Vaglio, R., Milani, E., and Montuori, M., IEEE Trans. Appl. Sup. 3, 1453 (1993).CrossRefGoogle Scholar
23Chern, C. S., Zhao, J., Norris, P. E., Garrison, S. M., Yau, K., Li, Y. Q., Gallois, B. M., and Kear, B. H., Appl. Phys. Lett. 61, 1983 (1992).CrossRefGoogle Scholar
24Habermeier, H-U., Lourenco, A. A. C. S., Friedl, B., Kircher, J., and Kohler, J., Solid State Commun. 77, 683 (1991).CrossRefGoogle Scholar
25Chang, C. C., Wu, X. D., Ramesh, R., Xi, X. X., Ravi, T. S., Venkatesan, T., Hwang, D. M., Miinchausen, R. E., Poltyn, S., and Nogar, N. S., Appl. Phys. Lett. 57, 1814 (1990).CrossRefGoogle Scholar
26Pennycook, S. J., Chisolm, M. F., Jesson, D. E., Feenstra, R., Zhu, S., Zheng, X. Y., and Lowndes, D. J., Physica C 202, 1 (1992).CrossRefGoogle Scholar
27Streiffer, S. K., Lairson, B. M., Eom, C. B., Clemens, B. M., Bravman, J. C., and Geballe, T. H., Phys. Rev. B 43, 13007 (1991).CrossRefGoogle Scholar
28Matijasevic, V., Rosenthal, P., Shinohara, K., Marshall, A. F., Hammond, R. H., and Beasley, M. R., J. Mater. Res. 6, 682 (1991).CrossRefGoogle Scholar
29Ramesh, R., Chang, C. C., Ravi, T. S., Hwang, D. M., Inam, A., Xi, X.X., Li, Q., Wu, X. D., and Venkatesan, T., Appl. Phys. Lett. 57, 1064 (1990).CrossRefGoogle Scholar
30Neugebauer, C. A., in Handbook of Thin Films Technology, edited by Maissel, L. I. and Glang, R. (McGraw-Hill, New York, 1970), Chap. 8.Google Scholar
31Yanagisawa, E., Kondoh, S., Shimoyama, J., Kase, J., Matsubara, T., and Morimoto, T., in High-Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Christen, D., Narayan, J., and Schneemeyer, L. (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, PA, 1990), pp. 275-278.Google Scholar
32Landau, L. D. and Lifshitz, E. M., Statistical Physics (Pergamon Press, London, 1958).Google Scholar
33Liang, R., Dosanjh, P., Bonn, D. A., Baar, D. J., Carolan, J. F., and Hardy, W. N., Physica C 195, 51 (1992).CrossRefGoogle Scholar
34Raistrick, I. D., Hawley, M., Beery, J. G., Garzon, F. H., and Houlton, R. J., Appl. Phys. Lett. 59, 3177 (1991).CrossRefGoogle Scholar
35Gao, Y., Bai, G., Lam, D. J., and Merkle, K. L., Physica C 173, 487 (1991).CrossRefGoogle Scholar
36Harsdorff, M., Thin Solid Films 90, 1 (1982).CrossRefGoogle Scholar
37Han, Z., Selinder, T. I., and Helmersson, U., J. Appl. Phys. 75, 2020 (1994), and references therein.Google Scholar
38Bhatt, D., Basu, S. N., Westerheim, A. C., and Anderson, A. C., Physica C 222, 283 (1994).CrossRefGoogle Scholar