Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T09:56:59.806Z Has data issue: false hasContentIssue false

Microstructure in silicon nitride containing β-phase seeding: Part I

Published online by Cambridge University Press:  31 January 2011

Horng-Hwa Lu
Affiliation:
Department of Material Science and Engineering, National Cheng-Kung University, Tainan 701, Taiwan, Republic of China
Jow-Lay Huang
Affiliation:
Department of Material Science and Engineering, National Cheng-Kung University, Tainan 701, Taiwan, Republic of China
Get access

Abstract

A proper powder preparation technique was used to develop elongated β–Si3N4 particles as seeds from raw materials. The phase transformation and development of microstructure in Si3N4 ceramics containing β–Si3N4 seeds were investigated. The specimens of seeded silicon nitride had higher phase transformation rates than the specimens without seed. A core/shell structure was observed by transmission electron microscopy in seeded specimens owing to the difference in aluminum concentration in Si3N4 grains. The misfit between the core and the shell was accommodated by interfacial dislocation that has a rotation character. The growth mode was epitaxial, although there was some compositional difference between the core and the shell. A relatively larger grain size and wider grain size distribution in seeded Si3N4 specimens was due to the amount of β-phase seeds that could act as the nuclei, and the final modification of the microstructure was due to the coalescence process. The crack wake process characterized the mechanism of toughening.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Becher, P.F., Lin, H.T., Hwang, S.L., Hoffmann, M.J., and Chen, I.W., in Silicon Nitride Ceramics—Scientific and Technological Advances, edited by Chen, I.W., Becher, P.F., Mitomo, M., Petzow, G., and Yen, T.S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), p. 147.Google Scholar
2.Sajgalik, P., Dusza, J., and Hoffmann, M.J., J. Am. Ceram. Soc. 78(10), 2619 (1995).CrossRefGoogle Scholar
3.Hoffmann, M.J., Pure Appl. Chem. 67(6), 939 (1995).CrossRefGoogle Scholar
4.Li, C-W., Lui, S-C., and Goldacker, J., J. Am. Ceram. Soc. 78(2), 449 (1995).CrossRefGoogle Scholar
5.Li, C.W., Lee, D.J., and Lui, S.C., J. Am. Ceram. Soc. 75(7), 1777 (1992).CrossRefGoogle Scholar
6.Huang, J.L., Din, L.M., Lu, H.H., and Chan, W.H., Ceram. Inter. 22, 131 (1996).CrossRefGoogle Scholar
7.Huang, J.L., Din, L.M., and Lu, H.H., J. Brit. Ceram. Trans. 95(2), 75 (1996).Google Scholar
8.Lange, F.F., J. Am. Ceram. Soc. 62(7–8), 428 (1979).CrossRefGoogle Scholar
9.Lange, F.F., J. Am. Ceram. Soc. 56(10), 518 (1973).CrossRefGoogle Scholar
10.Mitomo, M., Yang, N., Kishi, Y., and Bando, Y., J. Mater. Sci. 23, 3413 (1988).CrossRefGoogle Scholar
11.Mitomo, M. and Uenosono, S., J. Am. Ceram. Soc. 75(1), 103 (1992).CrossRefGoogle Scholar
12.Mitomo, M., Tsutsumi, M., Tanaka, H., Uenosono, S., and Saito, F., J. Am. Ceram. Soc. 73(8), 2441 (1990).CrossRefGoogle Scholar
13.Mitomo, M., Hirotsuru, H., Suematsu, H., and Nishimura, T., J. Am. Ceram. Soc. 78(1), 211 (1995).CrossRefGoogle Scholar
14.Hirosaki, N., Okamoto, Y., Akimune, Y., and Mitomo, M., J. Ceram. Soc. Jpn. Int. Edi. 102, 791 (1994).Google Scholar
15.Park, H., Kim, H.E., and Niihara, K., J. Am. Ceram. Soc. 80(3), 750 (1997).CrossRefGoogle Scholar
16.Hirao, K., Nagaoka, T., Brito, M.E., and Kanzaki, S., J. Am. Ceram. Soc. 77(7), 1857 (1994).CrossRefGoogle Scholar
17.Hirao, K., Nagaoka, T., Brito, M.E., and Kanzaki, S., J. Ceram. Soc. Jpn. 104(1), 54 (1996).CrossRefGoogle Scholar
18.Hirano, T., Yang, J., Niihara, K., J. Ceram. Soc. Jpn. 104(5), 462 (1996).CrossRefGoogle Scholar
19.Lee, R.R-R., Chen, C-J., and Lin, J-T., in Silicon-Based Structural Ceramics, edited by Sheldon, B.W. and Danforth, S.C. (Ceram. Trans. 42, American Ceramic Society, Westerville, OH, 1994), p. 221.Google Scholar
20.Woetting, G., Kanka, B., and Ziegler, G., in Non-Oxide Technical and Engineering Ceramics, edited by Hampshire, S. (Elsevier Applied Science, London, York, 1986), p. 83.CrossRefGoogle Scholar
21.Becher, P., J. Am. Ceram. Soc. 74(2), 255 (1991).CrossRefGoogle Scholar
22.Kawashima, T., Okamoto, H., Yamamoto, H., and Kitamura, A., J. Ceram. Soc. Jpn. 99, 310 (1991).CrossRefGoogle Scholar
23.Gazzara, C.P. and Messier, D.R., Ceram. Bull. 56(9), 777 (1977).Google Scholar
24.Evens, A.G., and Charles, E.A., J. Am. Ceram. Soc. 59(7–8), 371 (1976).CrossRefGoogle Scholar
25.Hwang, C.M., Tien, T.Y., Chen, I-W., in Sintering 87, edited by Somiya, S., Shimada, M., Yoshimura, M., and Watanabe, R. (Elsevier Applied Science, New York, 1988), p. 1034.Google Scholar
26.Sarin, V.K., Mater. Sci. Eng, A105/106, 151 (1988).CrossRefGoogle Scholar
27.Goto, Y. and Thomas, G., J. Mater. Sci. 30, 2194 (1995).CrossRefGoogle Scholar
28.Hoffmann, M.J. and Petzow, G., in Silicon Nitride Ceramics—Scientific and Technological Advances, edited by Chen, I.W., Becher, P.F., Mitomo, M., Petzow, G., and Yen, T.S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), p. 3.Google Scholar
29.Oyama, Y. and Kamigaito, O., Jpn. J. Appl. Phys. 10, 1637 (1971).CrossRefGoogle Scholar
30.Jack, K.H. and Wilson, W.I., Nature Phys. Sci. 238, 28 (1972).CrossRefGoogle Scholar
31.Hwang, S-L. and Chen, I-W., J. Am. Ceram. Soc. 77(7), 1711 (1994).CrossRefGoogle Scholar
32.Chatfield, C., Ekstrom, T., and Mikus, M., J. Mater. Sci. 21, 2297 (1986).CrossRefGoogle Scholar
33.Hwang, M., Laughling, D.E., and Bernstein, I.M., Acta Metall. 28, 621 (1980).CrossRefGoogle Scholar
34.Hwang, S-L. and Chen, I-W., J. Am. Ceram. Soc. 77(7), 1719 (1994).CrossRefGoogle Scholar
35.Whelan, M.J., in Diffraction and Imaging Techniques in Material Science, edited by Amelinckx, S., Gevers, R., and Van Landuyt, J. (North-Holland, New York, 1978), p. 43.CrossRefGoogle Scholar
36.Lee, W.E. and Hilmas, G.E., J. Am. Ceram. Soc. 72(10), 1731 (1989).Google Scholar
37.Woetting, G., Feuer, H., and Gugel, E., in Silicon Nitride Ceramics—Scientific and Technological Advances, edited by Chen, I.W., Becher, P.F., Mitomo, M., Petzow, G., and Yen, T.S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), p. 146.Google Scholar
38.Warren, R. and Waldron, M.B., Powder Metall. 15, 166 (1972).CrossRefGoogle Scholar
39.German, R.M., Liquid Phase Sintering (Plenum Press, New York, 1985), p. 127.CrossRefGoogle Scholar
40.Lee, D.D., Kang, S-J.L, and Yoon, D.N., J. Am. Ceram. Soc. 71(9), 803 (1988).CrossRefGoogle Scholar
41.Hwang, C.H., Tien, T.Y., and Chen, I-W., in Sintering 87, edited by Somiya, S., Shimada, M., Yoshimura, M., and Watanabe, R. (Elsevier, Barking, Essex, England, 1988), p. 1034.Google Scholar