Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T06:27:17.584Z Has data issue: false hasContentIssue false

Magnetic and electrical characteristics in dense Fe–Ni alloy cluster-assembled films prepared by energetic cluster deposition

Published online by Cambridge University Press:  31 January 2011

D.L. Peng*
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
K. Sumiyama
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
K. Kumagai
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
T. Yamabuchi
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
D. Kobayashi
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
T. Hihara
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
*
a)Address all correspondence to this author. Present address: Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People’s Republic of China. e-mail: [email protected]
Get access

Abstract

Fe–Ni alloy cluster-assembled films were obtained by a plasma–gas-condensation-type cluster-deposition method. We studied the magnetic and electrical properties of these assemblies prepared on an electrically grounded substrate [bias voltage (Va) = 0 kV] and on a negatively biased substrate (Va = −20 kV). The packing density and saturation magnetization per volume, Ms, are much larger for the assemblies prepared at Va = −20 kV than those prepared at Va = 0 kV, while the magnetic coercivity, Hc, and electrical resistivity, ρ, are much lower for the assemblies prepared at Va = −20 kV than those prepared at Va = 0 kV. For Ni-rich Fe–Ni alloy cluster-assembled films obtained at Va = −20 kV, the Hc values can become smaller than 160 A/m (the precision limit of our superconducting quantum interference device magnetometer) by adjusting the initial cluster size. The magnetic and electrical properties of Fe–Ni cluster-assembled films are much improved in comparison with those of pure Fe cluster-assembled films.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wernsdorfer, W., Orozco, E. Bonet, Hasselbach, K., Benoit, A., Barbara, B., Demoncy, N., Loiseau, A., Pascard, H.Mailly, D.: Experimental evidence of the Néel-Brown model of magnetization reversal. Phys. Rev. Lett. 78, 1791 1997Google Scholar
2Bansmann, J., Baker, S.H., Binns, C., Blackman, J.A., Bucher, J-P., Dorantes-Dávila, J., Dupuis, V., Favre, L., Kechrakos, D., Kleibert, A., Meiwes-Broer, K-H., Pastor, G.M., Perez, A., Toulemonde, O., Trohidou, K.N., Tuaillon, J.Xie, Y.: Magnetic and structural properties of isolated and assembled clusters. Surf. Sci. Rep. 56, 189 2005Google Scholar
3Yamamuro, S., Sumiyama, K., Konno, T.J.Suzuki, K.: Structural and magnetic evolution in self-assembling process of nanometer-sized Co clusters. Mater. Trans. 40, 1450 1999Google Scholar
4Uyeda, R.: Studies of ultrafine particles in Japan: Crystallography: Methods of preparation and technological applications. Prog. Mater. Sci. 35, 1 1991CrossRefGoogle Scholar
5Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 1989Google Scholar
6Kashu, S., Fuchita, E., Manabe, T.Hayashi, C.: Deposition of ultra fine particles using a gas jet. Jpn. J. Appl. Phys. 23, L910 1984Google Scholar
7Sasaki, Y., Hyakkai, M., Kita, E., Tasaki, A., Tanimoto, H.Iwamoto, Y.: Magnetic properties and Mössbauer study of Fe nanocrystals prepared by the gas-deposition method. J. Appl. Phys. 81, 4736 1997Google Scholar
8Yoshizawa, Y., Ogawa, S.Yamauchi, K.: New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044 1988Google Scholar
9Suzuki, K., Cadogan, J.M., Sahajwalla, V., Inoue, A.Masumoto, T.: Time-temperature-transformation study of a nanocrystalline Fe91Zr7B2 soft magnetic alloy. J. Appl. Phys. 79, 5149 1996Google Scholar
10Herzer, G.: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397 1990Google Scholar
11Melinon, P., Paillard, V., Dupuis, V., Perez, A., Jensen, P., Hoareau, A., Perez, J.P., Tuaillon, J., Broyer, M., Vialle, J.L., Pellarin, M., Baguenard, B.Lerme, J.: From free clusters to cluster-assembled materials. Int. J. Mod. Phys. B9, 339 1995CrossRefGoogle Scholar
12Haberland, H., Karrais, M., Mall, M.Thurner, Y.: Thin films from energetic cluster impact: A feasibility study. J. Vac. Sci. Technol., A 10, 3266 1992CrossRefGoogle Scholar
13Yamamuro, S., Sumiyama, K.Suzuki, K.: Monodispersed Cr cluster formation by plasma-gas-condensation. J. Appl. Phys. 85, 483 1999CrossRefGoogle Scholar
14Wegner, K., Piseri, P., Tafreshi, H. VahediMilani, P.: Cluster beam deposition: A tool for nanoscale science and technology. J. Phys. D: Appl. Phys. 39, R439 2006CrossRefGoogle Scholar
15Yamamuro, S., Sumiyama, K., Kamiyama, T.Suzuki, K.: Morphological and magnetic characteristics of monodispersed Co-cluster assemblies. J. Appl. Phys. 86, 5726 1999CrossRefGoogle Scholar
16Peng, D.L., Yamada, H., Sumiyama, K., Uchida, T.Hihara, T.: Formation and characterization of high-density Fe cluster-assembled films with soft magnetic behaviors. Eur. Phys. J., D 34, 173 2005Google Scholar
17Peng, D.L., Yamada, H., Hihara, H., Uchida, T.Sumiyama, K.: Dense Fe cluster-assembled films by energetic cluster deposition. Appl. Phys. Lett. 85, 2935 2004Google Scholar
18Peng, D.L., Katoh, R., Hihara, H.Sumiyama, K.: Soft magnetic properties of high-density Fe cluster-assembled films by energetic cluster deposition. Jpn. J. Appl. Phys. 45, 761 2006CrossRefGoogle Scholar
19Takagi, T.: Ionized-Cluster Beam Deposition and Epitaxy Noyes Park Ridge, NJ 1988Google Scholar
20Qiang, Y., Thurner, Y., Reiners, Th., Rattunde, O.Haberland, H.: Hard coatings (TiN, TixAl1–xN) deposited at room temperature by energetic cluster impact. Surf. Coat. Technol. 100–101, 27 1998Google Scholar
21Haberland, H., Mall, M., Moseler, M., Qiang, Y., Reiners, T.Thurner, Y.: Filling of micron-sized contact holes with copper by energetic cluster impact. J. Vac. Sci. Technol., A 12, 2925 1994Google Scholar
22Haberland, H., Insepov, Z.Moseler, M.: Molecular-dynamics simulation of thin-film growth by energetic cluster impact. Phys. Rev. B: Condens. Matter 51, 11061 1995CrossRefGoogle ScholarPubMed
23Meyer, D., Faheem, M., Campanell, M., Antony, J., Sharma, A.Qiang, Y.: Magnetic nanocrystalline films softened by obliquely accelerating iron nanoclusters. IEEE Trans. Magn. 43, 3010 2007CrossRefGoogle Scholar
24Bozorth, R.M.: Ferromagnetism IEEE Press New York 1993 102–124Google Scholar
25Pearson, W.B.: A Handbook of Lattice Spacings and Structures of Metals and Alloys Pergamon Press Oxford, UK 1958 683Google Scholar
26Kittel, C.Introduction to Solid State Physics, 7th ed., (John Wiley & Sons, New York, 1996 17, 457Google Scholar
27Cullity, B.D.: Introduction to Magnetic Materials Addison-Wesley Reading, MA 1972 387.Google Scholar