Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T17:50:18.834Z Has data issue: false hasContentIssue false

Local impedance and microchemical analysis of electrical heterogeneities in multilayer electroceramic devices

Published online by Cambridge University Press:  31 January 2011

G.Y. Yang*
Affiliation:
Center for Dielectric Studies, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
P.J. Moses
Affiliation:
Center for Dielectric Studies, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
E.C. Dickey
Affiliation:
Center for Dielectric Studies, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
C.A. Randall
Affiliation:
Center for Dielectric Studies, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We present an experimental methodology for locating and studying local failure sites in multilayer electroceramic devices at the submicron-length scale. In particular, the inhomogeneous degradation of multilayer ceramic capacitors is studied using a judicious combination of scanning electron microscopy (SEM), local-probe electrical measurements, focused ion beam (FIB) extraction, and transmission electron microscopy (TEM). Voltage-contrast SEM permits the identification of regions of different electrical potential within degraded multilayer devices. The local impedance from specific regions is measured in situ between a tungsten probe and the internal device electrodes, while impedance spectra are extracted for more detailed analysis. Because implementation occurs in dual-beam FIB/SEM, these locally defective sites can be extracted and thinned to electron transparency for further investigation by TEM. In this study, degraded sites in BaTiO3 multilayer capacitors are found to be associated with local oxygen deficiencies in BaTiO3, as measured by electron energy loss spectroscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Waser, R., Baiatu, T.Hardtl, K.H.: DC electrical degradation of perovskite-type titanates: 1. Ceramics. J. Am. Ceram. Soc. 73, 1645 1990CrossRefGoogle Scholar
2Waser, R., Baiatu, T.Hardtl, K.H.: DC electrical degradation of perovskite-type titanates: 2. Single-crystals. J. Am. Ceram. Soc. 73, 1654 1990CrossRefGoogle Scholar
3Baiatu, T., Waser, R.Hardtl, K.H.: DC electrical degradation of perovskite-type titanates: 3. A model of the mechanism. J. Am. Ceram. Soc. 73, 1663 1990CrossRefGoogle Scholar
4Sato, S., Nakano, Y., Sato, A.Nomura, T.: Effect of Y-doping on resistance degradation of multilayer ceramic capacitors with Ni electrodes under the highly accelerated life test. Jpn. J. Appl. Phys. 36, 6016 1997CrossRefGoogle Scholar
5Sato, S., Nakano, Y., Sato, A.Nomura, T.: Mechanism of improvement of resistance degradation in Y-doped BaTiO3 based MLCCs with Ni electrodes under highly accelerated life testing. J. Eur. Ceram. Soc. 19, 1061 1999CrossRefGoogle Scholar
6Chazono, H.Hagiwara, T.: Structure-property relationship in BT-based dielectrics for Ni-MLCC: Modification of grain boundary. Int. J. Appl. Ceram. Technol. 2, 45 2005CrossRefGoogle Scholar
7Yang, G.Y., Dickey, E.C., Randall, C.A., Barber, D.E., Pinceloup, P., Henderson, M.A., Hill, R.A., Beeson, J.J.Skamser, D.J.: Oxygen nonstoichiometry and dielectric evolution of BaTiO3: Part I. Improvement of insulation resistance with reoxidation. J. Appl. Phys. 96, 7492 2004CrossRefGoogle Scholar
8Yang, G.Y., Lian, G.D., Dickey, E.C., Randall, C.A., Barber, D.E., Pinceloup, P., Henderson, M.A., Hill, R.A., Beeson, J.J.Skamser, D.J.: Oxygen nonstoichiometry and dielectric evolution of BaTiO3: Part II. Insulation resistance degradation under applied dc bias. J. Appl. Phys. 96, 7500 2004CrossRefGoogle Scholar
9Yang, G.Y., Lee, S.I., Liu, Z.J., Anthony, C.J., Dickey, E.C., Liu, Z.K., Randall, C.A.: Effect of local oxygen activity on Ni-BaTiO3 interfacial reactions. Acta Mater. 54, 3513 2006CrossRefGoogle Scholar
10Toal, F.J., Dougherty, J.P.Randall, C.A.: Processing and electrical characterization of a varistor-capacitor cofired multilayer device. J. Am. Ceram. Soc. 81, 2371 1998CrossRefGoogle Scholar
11Bhattacharya, S.K.Tummala, R.R.: Next generation integral passives: Materials, processes, and integration of resistors and capacitors on PWB substrates. J. Mater. Sci.: Mater. Electron. 11, 253 2000Google Scholar
12Steele, B.C.H.Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345 2001CrossRefGoogle ScholarPubMed
13Priya, S., Ural, S., Kim, H.W., Uchino, K.Ezaki, T.: Multilayered unipoled piezoelectric transformers. Jpn. J. Appl. Phys. 43, 3503 2004CrossRefGoogle Scholar
14Randall, C.A., Kelnberger, A., Yang, G.Y., Eitel, R.E.Shrout, T.R.: High strain piezoelectric multilayer actuators: A material science and engineering challenge. J. Electroceram. 14, 177 2005CrossRefGoogle Scholar
15Newbury, D.E., Joy, D.C., Echlin, P., Fiori, C.E.Goldstein, J.I.: Advanced Scanning Electron Microscopy and X-Ray Microanalysis Plenum Press New York and London 1986 45CrossRefGoogle Scholar
16Chazono, H.Kishi, H.: DC-electrical degradation of the BT-based material for multilayer ceramic capacitor with Ni internal electrode: Impedance analysis and microstructure. Jpn. J. Appl. Phys. 40, 5624 2001CrossRefGoogle Scholar
17Deken, B., Pekarek, S.Dogan, F.: Minimization of field enhancement in multilayer capacitors. Comp. Mater. Sci. 37, 401 2006CrossRefGoogle Scholar
18Samantaray, M.M.: The Pennsylvania State University (private communication),Google Scholar
19Fleig, J.Maier, J.: Microcontact impedance measurements of individual highly conductive grain boundaries: General aspects and application to AgCl. Phys. Chem. Chem. Phys. 1, 3315 1999CrossRefGoogle Scholar
20Fleig, J., Rodewald, S.Maier, J.: Microcontact impedance measurements of individual highly resistive grain boundaries: General aspects and application to acceptor-doped SrTiO3. J. Appl. Phys. 87, 2372 2000CrossRefGoogle Scholar
21Shao, R., Kalinin, S.V.Bonnell, D.A.: Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy. Appl. Phys. Lett. 82, 1869 2003CrossRefGoogle Scholar
22Kalinin, S.V., Shao, R.Bonnell, D.A.: Local phenomena in oxides by advanced scanning-probe microscopy. J. Am. Ceram. Soc. 88, 1077 2005CrossRefGoogle Scholar
23Lee, J.S., Fleig, J., Maier, J., Chung, T.J.Kim, D.Y.: Microcontact impedance spectroscopy in nitrogen-graded zirconia. Solid State Ionics 176, 1711 2005CrossRefGoogle Scholar
24Fleig, J.Maier, J.: Finite element calculations of impedance effects at point contacts. Electrochim. Acta 41, 1003 1996CrossRefGoogle Scholar
25Impedance spectroscopy, in Emphasizing Solid Materials and Systems edited by J.R. Macdonald John Wiley & Sons New York, Chichester, Brisbane, Toronto Singapore 1987 14Google Scholar
26Maiti, H.S.Basu, R.N.: Complex-plane impedance analysis for semiconducting barium-titanate. Mater. Res. Bull. 21, 1107 1986CrossRefGoogle Scholar
27Sinclair, D.C.West, A.R.: Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature-coefficient of resistance. J. Appl. Phys. 66, 3850 1989CrossRefGoogle Scholar
28Cann, D.P.Randall, C.A.: Electrode effects in positive temperature coefficient and negative temperature coefficient devices measured by complex-plane impedance analysis. J. Appl. Phys. 80, 1628 1996CrossRefGoogle Scholar
29Dittrich, T., Weidmann, J., Koch, F., Uhlendorf, I.Lauermann, I.: Temperature and oxygen partial pressure-dependent electrical conductivity in nanoporous rutile and anatase. Appl. Phys. Lett. 75, 3980 1999CrossRefGoogle Scholar
31Berger, S.D., Macaulay, J.M.Brown, L.M.: Radiation damage in TiOx at high current density. Philos. Mag. Lett. 56, 179 1987CrossRefGoogle Scholar
32Sankaraman, M.Perry, D.: Valence determination of titanium and iron using electron-energy loss spectroscopy. J. Mater. Sci. 27, 2731 1992CrossRefGoogle Scholar
33Opitz, M.R., Albertsen, K., Beeson, J.J., Hennings, D.F., Routbort, J.L., Randall, C.A.: Kinetic process of reoxidation of base metal technology BaTiO3-based multilayer capacitors. J. Am. Ceram. Soc. 86, 1879 2003CrossRefGoogle Scholar
34Liu, W.Randall, C.A.: Electrical transport properties of the degraded SrTiO3 system (in press)Google Scholar
35Tsur, Y., Dunbar, T.D.Randall, C.A.: Crystal and defect chemistry of rare earth cations in BaTiO3. J. Electroceram. 7, 25 2001CrossRefGoogle Scholar