Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T22:21:03.864Z Has data issue: false hasContentIssue false

Li-Doped NiO Epitaxial Thin Film with Atomically Flat Surface

Published online by Cambridge University Press:  03 March 2011

T. Kamiya*
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan; and Hosono Transparent ElectroActive Materials Project, ERATO, JST, KSP C-1232, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan
H. Ohta
Affiliation:
Hosono Transparent ElectroActive Materials Project, ERATO, JST, KSP C-1232, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan
M. Kamiya
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
K. Nomura
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan; and Hosono Transparent ElectroActive Materials Project, ERATO, JST, KSP C-1232, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan
K. Ueda
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
M. Hirano
Affiliation:
Hosono Transparent ElectroActive Materials Project, ERATO, JST, KSP C-1232, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan
H. Hosono
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan; and Hosono Transparent ElectroActive Materials Project, ERATO, JST, KSP C-1232, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Li-doped NiO epitaxial films with high electrical conductivity and atomically flat stepped surfaces were fabricated by a combined technique of pulsed laser deposition and subsequent annealing. It was determined that subsequently annealing at temperatures as low as 600 °C significantly decreased electrical conductivity due to Li evaporation when the film surface was not protected from Li evaporation. To suppress Li evaporation, a yttria-stabilized-zironia plate was used to cover the film surface, which raised the annealing temperature up to 1300 °C while maintaining a high Li concentration and electrical conductivity. Thermally annealing at this temperature also improved crystal quality and formed epitaxial films with atomically flat stepped surfaces. The films were single crystalline at least in observation areas, 10 μm × 10 μm. A reasonably large Hall mobility approximately 0.05 cm2/Vs similar to that reported for bulk single-crystal NiO and a visible-light transmission in excess of 75% were obtained on 120-nm-thick films. Although annealing at higher temperatures such as 1400 °C can further improve the structural and optical properties, the Li concentration in the films was decreased to <3% of the as-deposited film.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Imada, M., Fujimori, A. and Tokura, Y., Rev. Mod. Phys. 70, 1039 (1998).CrossRefGoogle Scholar
2de Boer, J.H. and Verwey, E.J.W., Proc. Phys. Soc. 49, 59 (1937).CrossRefGoogle Scholar
3Oguchi, T., Terakura, K. and Williams, A.R., Phys. Rev. B 28, 6443 (1983).CrossRefGoogle Scholar
4Merlin, R., Phys. Rev. Lett. 54, 2727 (1985).CrossRefGoogle Scholar
5Anisimov, V.I., Zaanen, J. and Andersen, O.K., Phys. Rev. B 44, 943 (1991).CrossRefGoogle Scholar
6Morin, F.J., Phys. Rev. 93, 1199 (1954).CrossRefGoogle Scholar
7Bosman, A.J. and Crevecoeur, C., Phys. Rev. 144, 763 (1966).CrossRefGoogle Scholar
8Powell, R.J. and Spicer, W.E., Phys. Rev. B 2, 2182 (1970).CrossRefGoogle Scholar
9Sawatzky, G.A. and Allen, J.W., Phys. Rev. Lett. 53, 2339 (1984).CrossRefGoogle Scholar
10Fujimori, A. and Minami, F., Phys. Rev. B 30, 957 (1984).CrossRefGoogle Scholar
11Egelhoff, W.F. Jr., Ha, T., Misra, R.D., Kadmon, Y., Nir, J., Powell, C.J., Stiles, M.D., Lin, C.L., Sivertsen, J.M., Hudy, J.H., Takano, K., Berkowitz, A.E., Anthony, T.C. and Brug, J.A.J. Appl. Phys. 78 273 (1995).CrossRefGoogle Scholar
12Swagten, H.J.M., Strijkers, G.J., Bloemen, P.J.H., Willekens, M.M.H. and de Jonge, W.J.M., Phys. Rev. B 53, 9108 (1996).CrossRefGoogle Scholar
13Chern, G., Lee, D.S., Chang, H.C. and Te-ho, Wu: J. Magn. Magn. Mater. 193, 497 (1999).CrossRefGoogle Scholar
14Nogues, J. and Schuller, I.K., J. Magn. Magn. Mater. 192, 203 (1999).CrossRefGoogle Scholar
15Matsuyama, H., Haginoya, C. and Koike, K., Phys. Rev. Lett. 85, 646 (2000).CrossRefGoogle Scholar
16Zhu, W., Seve, L., Sears, R., Sinkovic, B. and Parkin, S.S.P., Phys. Rev. Lett. 86, 5389 (2001).CrossRefGoogle Scholar
17Maeda, T., Kim, S-B., Suga, T., Kurosaki, H., Yuasa, T., Yamada, Y., Watanabe, T., Matsumoto, K. and Hirabayashi, I., Physica C 357–360, 1042 (2001).CrossRefGoogle Scholar
18Chan, I-M., Hsu, T.Y. and Hong, F.C., Appl. Phys. Lett. 81, 1899 (2002).CrossRefGoogle Scholar
19Suga, K., Koshizaki, N., Yasumoto, K. and Smela, E., Sens. Actuators B 14, 598 (1993).CrossRefGoogle Scholar
20Sato, H., Minami, T., Takata, S. and Yamada, T., Thin Solid Films 236, 27 (1993).CrossRefGoogle Scholar
21Ohya, Y., Uedo, M. and Takahashi, Y., Jpn. J. Appl. Phys., Part 1 35, 4738 (1996).CrossRefGoogle Scholar
22Lee, W.Y., Mauri, D. and Hwang, C., Appl. Phys. Lett. 72, 1584 (1998).CrossRefGoogle Scholar
23Ohya, Y., Niwa, T., Ban, T. and Takahashi, Y., Jpn. J. Appl. Phys., Part 1 40, 297 (2001).CrossRefGoogle Scholar
24Duo, L., Portalupi, M., Marcon, M., Bertacco, R. and Ciccacci, F., Surf. Sci. 518, 234 (2002).CrossRefGoogle Scholar
25Lamberti, C., Groppo, E., Prestipino, C., Casassa, S., Ferrari, A.M. and Pisani, C., Phys. Rev. Lett. 91, 046101 (2003).CrossRefGoogle Scholar
26Kakehi, Y., Nakao, S., Satoh, K. and Kusaka, T., J. Cryst. Growth 237–239, 591 (2002).CrossRefGoogle Scholar
27Tachiki, M., Hosomi, T. and Kobayashi, T., Jpn. J. Appl. Phys., Part 1 39, 1817 (2000).CrossRefGoogle Scholar
28Shin, W. and Murayama, N., Jpn. J. Appl. Phys., Part 2 38, L1336 (1999).CrossRefGoogle Scholar
29Watari, K., Hwang, H.J., Toriyama, M. and Kanzaki, S., J. Mater. Res. 14, 1409 (1999).CrossRefGoogle Scholar
30Ohta, H., Nomura, K., Orita, M., Hirano, M., Ueda, K., Suzuki, T., Ikuhara, Y. and Hosono, H., Advanced Functional Materials. 13, 139 (2003).CrossRefGoogle Scholar
31Hiramatsu, H., Ueda, K., Ohta, H., Orita, M., Hirano, M. and Hosono, H., Appl. Phys. Lett. 81, 598 (2002).CrossRefGoogle Scholar
32Ohta, H., Hirano, M., Nakahara, K., Maruta, H., Tanabe, T., Kamiya, M., Kamiya, T. and Hosono, H., Appl. Phys. Lett. 83, 1029 (2003).CrossRefGoogle Scholar
33 Landolt-Börnstein Handbook (Springer-Verlag, Heidelberg, 1984) No. 9.15.2.3.4, p. 223.Google Scholar
34Austin, I.G., Springthorpe, A.J., Smith, B.A. and Turner, C.E., Proc. Phys. Soc. 90, 157 (1967).CrossRefGoogle Scholar
35Adler, D. and Feinleib, J., Phys. Rev. B 2, 3112 (1970).CrossRefGoogle Scholar
36 Landolt-Börnstein Handbook (Springer-Verlag, Heidelberg, 1984) No. 9.15.2.3.4, p. 220.Google Scholar