Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T07:35:21.076Z Has data issue: false hasContentIssue false

Kinetics of the reactive spreading of molten aluminum on ceramic surfaces

Published online by Cambridge University Press:  03 March 2011

Douglas A. Weirauch Jr.
Affiliation:
Alcoa Technical Center, 100 Technical Drive, Alcoa Center, Pennsylvania 156069-0001
Willy M. Balaba
Affiliation:
Alcoa Technical Center, 100 Technical Drive, Alcoa Center, Pennsylvania 156069-0001
Anthony J. Perrotta
Affiliation:
Alcoa Technical Center, 100 Technical Drive, Alcoa Center, Pennsylvania 156069-0001
Get access

Abstract

The spreading kinetics of molten aluminum on ceramic surfaces bearing reactive coatings has been studied through the direct observation of sessile drops, either formed in situ or emplaced at temperature. Analysis of videotapes permitted the assessment of the rate of advance of rapidly spreading droplets. Experimental conditions in this study were chosen to avoid the severe retarding effect of the aluminum oxide film which is typically encountered in aluminum wetting experiments. A variety of reactive coating systems were examined (B, Cu, Ni, Ti, and Ti + B), and the effect of coating amount was assessed. Based upon the experiments of this study, the main effect of the coatings is to drive spreading due to strong exothermic interfacial reactions. The intensity of the interfacial reaction causes the change in free energy per unit area of interface to dominate the rate of movement of the triple line.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Balaba, W. M., Weirauch, D. A. Jr., Perrotta, A. J., Armstrong, G. H., Anyablebechi, P. N., Kauffman, S., Maclnnes, A. N., Winner, A. M., and Barron, A. R., J. Mater. Res. 8, 3192 (1993).CrossRefGoogle Scholar
2Brennan, J. J. and Pask, J. A., J. Am. Ceram. Soc. 51, 569 (1968).CrossRefGoogle Scholar
3Champion, J. A., Keene, B. J., and Stillwood, J. M., J. Mater. Sci. 4, 39 (1969).CrossRefGoogle Scholar
4Eustathopoulos, N., Joud, J. C., Desre, P., and Hicter, M., J. Mater. Sci. 9, 1223 (1974).CrossRefGoogle Scholar
5Coudurier, L., Adorian, J., Pique, D., and Eustathopoulos, N., Rev. Int. Hautes Temper. Refract., Fr. 21, 81 (1984).Google Scholar
6John, H. and Hausner, H., J. Mater. Sci. Lett. 5, 549 (1986).CrossRefGoogle Scholar
7Laurent, V., Chatain, D., Chatillon, C., and Eustathopoulos, N., Acta Metall. 36, 1797 (1988).CrossRefGoogle Scholar
8Weirauch, D. A. Jr., in Ceramic Microstructures '86, edited by Pask, J. A. and Evans, A. G. (Plenum Press, New York 1988), p. 329.Google Scholar
9Ownby, P. D., Li, K. W., and Weirauch, D. A. Jr., J. Am. Ceram. Soc. 74, 1275 (1991).CrossRefGoogle Scholar
10Kaptay, G., Mater. Sci. Forum 77, 315 (1991).CrossRefGoogle Scholar
11Ip, S. W., Kucharski, M., and Toguri, J. M., J. Mater. Sci. Lett. 12, 1699 (1993).CrossRefGoogle Scholar
12Ignatowitz, E., Aluminum 50, 334 (1974).Google Scholar
13Fitzer, E., Ignatowitz, E., and Sahebkar, M., Report on the Int. Carbon Conf. “Carbon '72”, Baden-Baden, Germany (1975).Google Scholar
14Lachman, W. L., Penty, R. A., and Jahn, A. F., US Patent No. 3,860,443 (1975).Google Scholar
15Amateau, M. F., J. Composite Mater. 10, 279 (1976).CrossRefGoogle Scholar
16Sara, R. V., Report No. AFML-TR-66-310 (Air Force Materials Laboratory, Wright-Patterson AFB, OH, 1966), Pt. 1, p. 193.Google Scholar
17Gebhardt, J. J., Report No. CTR 73-36 (AMMRC, Watertown, MA, 1973).Google Scholar
18Gremion, R., Moreau, M., Joquet, G., and Mottet, P., Bull. Inform. Sci. Tech. Commis. Energ. At. (Fr.) 155, 53 (1971).Google Scholar
19Savvatejeva, S. M., and Sebo, P., Proc. of the 3rd Int. Symp. Compos. Met. Mater. Moscow, USSR, Paper No. 21 (1978), p. 21–1.Google Scholar
20Pepper, R. T. and Kendall, E. G., US Patent No. 3,770,488 (1973).Google Scholar
21Baker, A. A., Shipman, C., and Jackson, P. W., Fiber Sci. Technol. 5, 213 (1972).CrossRefGoogle Scholar
22De Lamotte, E., Phillips, K., Perry, A. J., and Killias, H. R., J. Mater. Sci. 7, 346 (1972).CrossRefGoogle Scholar
23Aggour, L., Fitzer, E., Heyman, M., and Ignatowitz, E., Thin Solid Films 40, 97 (1977).CrossRefGoogle Scholar
24Upp, J. W., Pepper, R. T., Kendall, E. G., and Rossi, R. C., Report No. TR-0059(9250-10)-9 (The Aerospace Corporation, El Segundo, CA, 1970).Google Scholar
25Kohara, S. and Muto, N., in Proc. of the 5th Int. Conf. on Composite Materials ICCM5, edited by Harrigan, W. C., Strife, J., and Dhingra, A. K. (TMS-AIME, Warrensdale, PA, 1985).Google Scholar
26Imprescia, R. J., Levinson, L. S., Reiswig, R. D., Wallace, T. C., and Williams, J. M., Progress Report No. LA-5741-RR (Los Alamos Scientific Laboratory, Los Alamos, NM 1974).Google Scholar
27Kashin, O. A., Charenko, V. E., Salibekov, S. E., and Zabolotskii, A. A., Metall. Sci. Heat Treatment 22, 809 (1980).CrossRefGoogle Scholar
28Nieh, T. G. and Vidoz, A. E., J. Am. Ceram. Soc. 65, 227 (1982).CrossRefGoogle Scholar
29Singh, R. N. and Brun, M. K., Ceram. Eng. Sci. Proc. 8, 636 (1987).CrossRefGoogle Scholar
30Brupbacher, J. M., Christodoulou, L., and Nagle, D. C., US Patent 4,710,348 (1987).Google Scholar
31Schamm, S., Fedou, R., Rocher, J. P., Quenisset, J. M., and Naslain, R., Metall. Trans. A 22A, 2133 (1991).CrossRefGoogle Scholar
32Eustathopoulos, N. and Coudurier, L., Ann. Chim. Fr. (Paris) 10, 1 (1985).Google Scholar
33Zhu, Z., Proc. Int. Symp. on Advances in Cast Reinforced Metal Composites, edited by Fishman, S. G. and Dhingra, A. K. (ASM INTERNATIONAL, Metals Park, OH, 1988), p. 93.Google Scholar
34Weirauch, D. A. Jr. and Krafick, W. J., Metall. Trans. A 21A, 1745 (1990).CrossRefGoogle Scholar
35Naidich, Yu V., Chubashov, Yu. N., Ishchuk, N. F., and Krasovskii, V. P., Proshkovaya Metallurgiya 6, 67 (1983).Google Scholar
36Naidich, Yu V. and Ju, V., in Progress in Surface and Membrane Science (Academic Press, New York, 1981), Vol. 14, p. 353.Google Scholar
37Rhee, S. K., J. Am. Ceram. Soc. 53, 386 (1970).CrossRefGoogle Scholar
38Tsai, H. W., Wang, W. L., and Zhang, G. D., in 8th Int. Conf. on Comp. Mat., ICCM 8, edited by Tsai, S. W. and Springer, G. S. (SAMPE, Covina, CA, 1991), p. 19C1.Google Scholar
39Espié, L., Drevet, B., and Eustathopoulos, N., Metall. Mat. Trans. A 25A, 599 (1994).CrossRefGoogle Scholar
40Eustathopoulos, N. and Mortensen, A., in Fundamentals of Metal Matrix Composites, edited by Suresh, S., Mortensen, A., and Needleman, A. (Butterworth-Heinemann, Stoneham, MA, 1993), p. 42.CrossRefGoogle Scholar
41Rawers, J. C. and Wrzesinski, W. R., J. Mater. Sci. 27, 2877 (1992).CrossRefGoogle Scholar
42Maxwell, I. and Hellawell, A., Metall. Trans. 3, 1487 (1972).CrossRefGoogle Scholar
43Barin, I., Sauert, F., Schultze-Rhonhof, E., and Sheng, W. S., Thermochemical Data of Pure Substances (VCH Publishers, New York, 1989).Google Scholar
44Aksay, I. A., Hoge, C. E., and Pask, J. A., J. Phys. Chem. 78, 1178 (1974).CrossRefGoogle Scholar
45Nikolopoulos, P., J. Mater. Sci. 20, 3993 (1985).CrossRefGoogle Scholar
46Garcia-Cordovilla, C., Louis, E., and Pamies, A., J. Mater. Sci. 21, 2787 (1986).CrossRefGoogle Scholar
47Dunmead, S. D., Readey, D. W., and Semler, C. E., J. Am. Ceram. Soc. 73, 2318 (1989).CrossRefGoogle Scholar
48Rice, R. W., Richardson, G. Y., Kumetz, J. M., Schroeter, T., and McDonough, W. J., Adv. Ceram. Mat. 2, 222 (1987).Google Scholar
49Bailey, G. L.J. and Watkins, H. C., J. Inst. Metals 80, 57 (1951–52).Google Scholar
50Ambrose, J. C. and Nicholas, M. G., in Proc. of the 1st European Conf., Euromat '89, Aachen, Germany (1989), Vol. 2, p. 1073.Google Scholar
51Xian, A-P., Xue, X-M., and Si, Z-Y., J. Mater. Sci. Lett. 10, 246 (1991).CrossRefGoogle Scholar
52Ambrose, J. C., Nicholas, M. G., and Stoneham, A. M., Acta Metall. Mater. 40, 2483 (1992).CrossRefGoogle Scholar
53Tomsia, A. P., Pask, J. A., and Loehman, R. E., Ceram. Eng. Sci. Proc. 10, 1631 (1989).CrossRefGoogle Scholar
54Kritsalis, P., Coudurier, L., and Eustathopoulos, N., J. Mater. Sci. 26, 3400 (1991).CrossRefGoogle Scholar