Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T02:45:57.402Z Has data issue: false hasContentIssue false

Influence of Deposition Parameters on the Composition and Structure of Reactively Sputtered Nanocomposite TaC/a-C:H Thin Films

Published online by Cambridge University Press:  03 March 2011

Ryan D. Evans*
Affiliation:
The Timken Company, Canton, Ohio 44706; and Case Western Reserve University, Cleveland, Ohio 44106
Jane Y. Howe
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
James Bentley
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Gary L. Doll
Affiliation:
The Timken Company, Canton, Ohio 44706
Jeffrey T. Glass
Affiliation:
Duke University, Durham, North Carolina 27708
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The properties of nanocomposite tantalum carbide/amorphous hydrocarbon (TaC/a-C:H) thin films depend closely on reactive magnetron sputtering deposition process conditions. The chemical composition and structure trends for TaC/a-C:H films were obtained as a function of three deposition parameters: acetylene flow rate, applied direct current (dc) bias voltage, and substrate carousel rotation rate. Films were deposited according to a 23 factorial experimental design to enable multiple linear regression modeling of property trends. The Ta/C atomic ratio, hydrogen content, total film thickness, TaC crystallite size, and Raman spectra were statistically dependent on acetylene flow rate, applied dc bias voltage, or both. Transmission electron microscopy revealed a nanometer-scale lamellar film structure, the periodicity of which was affected mostly by substrate carousel rotation rate. The empirical property trends were interpreted with respect to hypothesized growth mechanisms that incorporate elements of physical vapor deposition and plasma-enhanced chemical vapor deposition.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Doll, G.L. and Osborn, B.K.: Engineering surfaces of precision steel components, in 44th Annual Technical Conference Proceedings (Society of Vaccum Coaters, Philadelphia, PA, Apr. 21-26 2001).Google Scholar
2Evans, R.D., Cooke, E.P., Ribaudo, C.R. and Doll, G.L. Nanocomposite tribological coatings for rolling element bearings, in Surface Engineering 2002—Synthesis, Characterization and Applications, edited by Kumar, A., Meng, W.J., Cheng, Y.T., Zabinski, J.S., Doll, G.L., and S. Veprek. (Mater. Res. Soc. Symp. 750, Warrendale, PA, 2003), Y4.8 p. 407.Google Scholar
3Sjostrom, H. and Wikstrom, V.: Diamond-like carbon coatings in rolling contacts. Proc. Instn. Mech. Engrs. Part J. 215, 545 (2001).CrossRefGoogle Scholar
4Dimigen, H. and Hubsch, H.: Applying low-friction wear-resistant thin solid films by physical vapour deposition. Philips Tech. Rev. 41, 186 (1983).Google Scholar
5Dimigen, H. and Hubsch, H.: Carbon-containing sliding layer. U.S. Patent No. 4 525 417 (June 25, 1985).Google Scholar
6Dimigen, H., Hubsch, H. and Memming, R.: Tribological and electrical properties of metal-containing hydrogenated carbon films. Appl. Phys. Lett. 50, 1056 (1987).CrossRefGoogle Scholar
7Bergmann, E. and Vogel, J.: Tribological properties of metal/carbon coatings. J. Vac. Sci. Technol. A 4, 2867 (1986).CrossRefGoogle Scholar
8Bergmann, E. and Vogel, J.: Influence of composition and process parameters on the internal stress of the carbides of tungsten, chromium, and titanium. J. Vac. Sci. Technol. A 5, 70 (1987).CrossRefGoogle Scholar
9Klages, C.P. and Memming, R.: Microstructure and physical properties of metal-containing hydrogenated carbon films. Mater. Sci. Forum 52, 609 (1989).Google Scholar
10Benndorf, C., Grischke, M., Koeberle, H., Memming, R., Brauer, A. and Thieme, F.: Identification of carbon and tantalum chemical states in metal-doped a-C:H films. Surf. Coat. Technol. 36, 171 (1988).Google Scholar
11van Duyn, W. and van Lochem, B.: Chemical and mechanical characterization of WC:H amorphous layers. Thin Solid Films 181, 497 (1989).CrossRefGoogle Scholar
12Grischke, M., Bewilogua, K. and Dimigen, H.: Preparation, properties and structure of metal containing amorphous hydrogenated carbon films. Mater. Manuf. Process. 8, 407 (1993).Google Scholar
13Bewilogua, K. and Dimigen, H.: Preparation of W-C:H coatings by reactive magnetron sputtering. Surf. Coat. Technol. 61, 144 (1993).CrossRefGoogle Scholar
14Sjostrom, H., Hultman, L., Sundgren, J.E. and Wallenberg, L.R.: Microstructure of amorphous C:H and metal-containing C:H films deposited on steel substrates. Thin Solid Films 232, 169 (1993).Google Scholar
15Meng, W.J., Curtis, T.J., Rehn, L.E. and Baldo, P.M.: Plasma-assisted deposition and characterization of Ti-containing diamondlike-carbon coatings. J. Appl. Phys. 83, 6076 (1998).Google Scholar
16Meng, W.J. and Gillispie, B.A.: Mechanical properties of Ti-containing and W-containing diamond-like carbon coatings. J. Appl. Phys. 84, 4314 (1998).CrossRefGoogle Scholar
17Voevodin, A.A., O’Neill, J.P. and Zabinski, J.S.: Tribological performance and tribochemistry of nanocrystalline WC/amorphous diamond-like carbon composites. Thin Solid Films 342, 194 (1999).CrossRefGoogle Scholar
18Schiffmann, K.I., Fryda, M., Goerigk, G., Lauer, R., Hinze, P. and Bulack, A.: Sizes and distances of metal clusters in Au-, Pt-, W-, and Fe-containing diamond-like carbon hard coatings: A comparative study by small angle x-ray scattering, wide angle x-ray diffraction, transmission electron microscopy and scanning tunnelling microscopy. Thin Solid Films 347, 60 (1999).CrossRefGoogle Scholar
19Villiger, P., Sprechter, Ch. and Peters, J.A.: Parameter optimization of Ti-DLC coatings using statistically based methods. Surf. Coat. Technol. 116-119, 585 (1999).CrossRefGoogle Scholar
20Hakansson, G., Petrov, I. and Sundgren, J.E.: Growth of TaC thin films by reactive direct current magnetron sputtering: Composition and structure. J. Vac. Sci. Technol. A 8, 3769 (1990).CrossRefGoogle Scholar
21Gerstenberg, K.W. and Grischke, M.: Thermal gas evolution studies on a-C:H:Ta films. J. Appl. Phys. 69, 736 (1991).CrossRefGoogle Scholar
22Palicki, D.P. and Matthews, A. Recent developments in magnetron sputtering systems. Finishing (Nov. 1993), p. 36.Google Scholar
23Teer, D.G.: Magnetron sputter ion plating. U.S. Patent No. 5 556 519 (September 17, 1996).Google Scholar
24Brande, P.V., Lucas, S., Winand, R., Renard, L. and Weymeersch, A.: Study of the formation of a carbon layer on a sputtering target during magnetron-enhanced reactive sputtering. Surf. Coat. Technol. 61, 151 (1993).CrossRefGoogle Scholar
25Safi, I.: Recent aspects concerning DC reactive magnetron sputtering of thin films: a review. Surf. Coat. Technol. 127, 203 (2000).CrossRefGoogle Scholar
26Montgomery, D.G.: Design and Analysis of Experiments, 5th ed. (John Wiley & Sons, New York, 2001).Google Scholar
27Ferrari, A.C. and Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).Google Scholar
28Gruzalski, G.R. and Zehner, D.M.: Defect states in substoichiometric tantalum carbide. Phys. Rev. B 34, 3841 (1986).Google Scholar
29X-ray, NIST photoelectron spectroscopy database, v. 3.4 (2003). http://srdata.nist.gov/xps/.Google Scholar
30Rempel, A.A. and Sinelnichenko, A.K.: X-ray photoelectron spectra of nonstoichiometric tantalum carbide. Phys. Metals 11, 352 (1992).Google Scholar
31Angus, J.C. and Jansen, F.: Dense “diamondlike” hydrocarbons as random covalent networks. J. Vac. Sci. Technol. A 6, 1778 (1988).CrossRefGoogle Scholar
32Klug, H.P. and Alexander, L.E.: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (John Wiley & Sons, New York, NY, 1974).Google Scholar
33Logothetidis, S., Meletis, E.I. and Kourouklis, G.: New approach in the monitoring and characterization of titanium nitride thin films. J. Mater. Res. 14, 436 (1999).CrossRefGoogle Scholar
34Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. R. 37, 129 (2002).CrossRefGoogle Scholar
35Tamor, M.A. and Vassell, W.C.: Raman “fingerprinting” of amorphous carbon films. J. Appl. Phys. 76, 3823 (1994).Google Scholar
36Adamopoulos, G., Robertson, J., Morrison, N.A. and Godet, C.: Hydrogen content estimation of hydrogenated amorphous carbon by visible Raman spectroscopy. J. Appl. Phys. 96, 6348 (2004).CrossRefGoogle Scholar
37Hofmann, D., Schuessler, H., Bewilogua, K., Hubsch, H. and Lemke, J.: Plasma-booster-assisted hydrogenated W-C coatings. Surf. Coat. Technol. 73, 137 (1995).CrossRefGoogle Scholar
38Bewilogua, K., Cooper, C.V., Specht, C., Schroder, J., Wittorf, R. and Grischke, M.: Erratum to: “Effect of target material on deposition and properties of metal-containing DLC (Me-DLC) coatings.” Surf. Coat. Technol. 132, 275 (2000).CrossRefGoogle Scholar
39Park, S.J., Lee, K.R., Ko, D.H. and Eun, K.Y.: Microstructure and mechanical properties of WC-C nanocomposite films. Diamond Relat. Mater. 11, 1747 (2002).CrossRefGoogle Scholar
40Hans, M., Buchel, R., Grischke, M., Hobi, R. and Zach, M.: High-volume PVD coating of precision components of large volumes at low process costs. Surf. Coat. Technol. 123, 288 (2000).CrossRefGoogle Scholar
41Kulikovsky, V.Y., Fendrych, F., Jastrabik, L. and Chvostova, D.: Study of formation and some properties of Ti-C:H films prepared by d.c. magnetron sputtering. Surf. Coat. Technol. 91, 122 (1997).CrossRefGoogle Scholar
42Shi, B. and Meng, W.J.: Intrinsic stresses and mechanical properties of Ti-containing hydrocarbon coatings. J. Appl. Phys. 94, 186 (2003).Google Scholar
43Wagner, W., Rauch, F. and Grischke, M.: Stoichiometry of a-C:H(Ta) films determined by means of RBS and the 15N technique. Nuc. Inst. Meth. Phys. Res. 111, 111 (1996).CrossRefGoogle Scholar
44Meng, W.J., Meletis, E.I., Rehn, L.E. and Baldo, P.M.: Inductively coupled plasma assisted deposition and mechanical properties of metal-free and Ti-containing hydrocarbon coatings. J. Appl. Phys. 87, 2840 (2000).CrossRefGoogle Scholar
45Meng, W.J., Tittsworth, R.C. and Rehn, L.E.: Mechanical properties and microstructure of TiC/amorphous hydrocarbon nanocomposite coatings. Thin Solid Films 377, 222 (2000).CrossRefGoogle Scholar
46Meng, W.J., Tittsworth, R.C., Jiang, J.C., Feng, B., Cao, D.M., Winkler, K. and Palshin, V.: Ti atomic bonding environment in Ti-containing hydrocarbon coatings. J. Appl. Phys. 88, 2415 (2000).Google Scholar
47Czyzniewski, A.: Deposition and some properties of nanocrystalline WC and nanocomposite WC/a-C:H coatings. Thin Solid Films 433, 180 (2003).CrossRefGoogle Scholar
48Strondl, C., van der Kolk, G.J., Hurkmans, T., Fleischer, W., Trinh, T., Carvalho, N.M. and de Hosson, J.Th.M.: Properties and characterization of multilayers of carbides and diamond-like carbon. Surf. Coat. Technol. 142, 707 (2001).CrossRefGoogle Scholar
49Zehnder, T. and Patscheider, J.: Nanocomposite TiC/a-C:H hard coatings deposited by reactive PVD. Surf. Coat. Technol. 133, 138 (2000).CrossRefGoogle Scholar
50Zehnder, T., Schwaller, P., Munnik, F., Mikhailov, S. and Patscheider, J.: Nanostructural and mechanical properties of nanocomposite nc-TiC/a-C:H films deposited by reactive unbalanced magnetron sputtering. J. Appl. Phys. 95, 4327 (2004).Google Scholar
51Strondl, C., Carvalho, N.M., De Hosson, J.Th.M. and van der Kolk, G.J.: Investigation on the formation of tungsten carbide in tungsten-containing diamond like carbon coatings. Surf. Coat. Technol. 162, 288 (2003).CrossRefGoogle Scholar
52Smith, D.L.: Thin-Film Deposition: Principles and Practice (McGraw Hill, Boston, MA, 1995) pp. 372.Google Scholar
53Venables, J.A., Spiller, G.D.T. and Hanbucken, M.: Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399 (1984).CrossRefGoogle Scholar
54Angus, J.C. and Hayman, C.C.: Low-pressure, metastable growth of diamond and diamondlike phases. Science 241, 913 (1988).Google Scholar
55Cuomo, J.J., Pappas, D.L., Bruley, J., Doyle, J.P. and Saenger, K.L.: Vapor deposition processes for amorphous carbon films with sp 3 fractions approaching diamond. J. Appl. Phys. 70, 1706 (1991).CrossRefGoogle Scholar
56Lifshitz, Y., Kasi, S.R., Rabalais, J.W. and Eckstein, W.: Subplantation model for film growth from hyperthermal species. Phys. Rev. B 41, 10468 (1990).Google Scholar
57Robertson, J.: Deposition mechanisms for promoting sp 3 bonding in diamond-like carbon. Diamond Relat. Mater. 2, 984 (1993).CrossRefGoogle Scholar
58Robertson, J.: The deposition mechanism of diamond-like a-C and a-C:H. Diamond Relat. Mater. 3, 361 (1994).CrossRefGoogle Scholar
59Grill, A., Meyerson, B.S., Patel, V.V., Reimer, J.A. and Petrich, M.A.: Inhomogeneous carbon bonding in hydrogenated amorphous carbon films. J. Appl. Phys. 61, 2874 (1987).Google Scholar
60von Keudell, A., Meier, M. and Hopf, C.: Growth mechanism of amorphous hydrogenated carbon. Diamond Relat. Mater. 11, 969 (2002).CrossRefGoogle Scholar
61von Keudell, A., Schwarz-Selinger, T. and Jacob, W.: Simultaneous interaction of methyl radicals and atomic hydrogen with amorphous hydrogenated carbon films. J. Appl. Phys. 89, 2979 (2001).Google Scholar
62Ziegler, J.F.: The Stopping and Range of Ions in Solids (Pergamon, New York, NY, 1985). www.srim.org.Google Scholar
63Angus, J.C.: Empirical categorization and naming of “diamond-like” carbon films. Thin Solid Films 142, 145 (1986).CrossRefGoogle Scholar
64Windischmann, H.: An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering. J. Appl. Phys. 62, 1800 (1987).Google Scholar