Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T04:41:04.922Z Has data issue: false hasContentIssue false

In situ compression tests on micron-sized silicon pillars by Raman microscopy—Stress measurements and deformation analysis

Published online by Cambridge University Press:  31 January 2011

K. Wasmer*
Affiliation:
EMPA, Swiss Federal Laboratories for Materials Testing and Research, CH-3602 Thun, Switzerland
T. Wermelinger
Affiliation:
Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, 8093 Zürich, Switzerland
A. Bidiville
Affiliation:
EMPA, Swiss Federal Laboratories for Materials Testing and Research, CH-3602 Thun, Switzerland
R. Spolenak
Affiliation:
Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, 8093 Zürich, Switzerland
J. Michler
Affiliation:
EMPA, Swiss Federal Laboratories for Materials Testing and Research, CH-3602 Thun, Switzerland
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Mechanical properties of silicon are of high interest to the microelectromechanical systems community as it is the most frequently used structural material. Compression tests on 8 μm diameter silicon pillars were performed under a micro-Raman setup. The uniaxial stress in the micropillars was derived from a load cell mounted on a microindenter and from the Raman peak shift. Stress measurements from the load cell and from the micro-Raman spectrum are in excellent agreement. The average compressive failure strength measured in the middle of the micropillars is 5.1 GPa. Transmission electron microscopy investigation of compressed micropillars showed cracks at the pillar surface or in the core. A correlation between crack formation and dislocation activity was observed. The authors strongly believe that the combination of nanoindentation and micro-Raman spectroscopy allowed detection of cracks prior to failure of the micropillar, which also allowed an estimation of the in-plane stress in the vicinity of the crack tip.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ericson, F., Schweitz, J.A.: Micromechanical fracture strength of silicon. J. Appl. Phys. 68, 5840 1990Google Scholar
2Jadaan, O.M., Nemeth, N.N., Bagdahn, J., Sharpe, W.N.: Probabilistic Weibull behavior and mechanical properties of MEMS brittle materials. J. Mater. Sci. 38, 4087 2003Google Scholar
3Greek, S., Ericson, F., Johansson, S., Schweitz, J.A.: In situ tensile strength measurement and Weibull analysis of thick film and thin film micromachined polysilicon structures. Thin Solid Films 292, 247 1997CrossRefGoogle Scholar
4Namazu, T., Isono, Y., Tanaka, T.: Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. J. Microelectromech. Syst. 9, 450 2000CrossRefGoogle Scholar
5Moser, B., Wasmer, K., Barbieri, L., Michler, J.: Strength and fracture of Si micropillars: A new scanning electron microscopy-based micro-compression test. J. Mater. Res. 22, 1004 2007Google Scholar
6Anastassakis, E., Pinczuk, A., Burstein, A., Pollak, F.H., Cardona, M.: Effect of static uniaxial stress on Raman spectrum of silicon. Solid State Commun. 8, 133 1970Google Scholar
7Anastassakis, E., Canterero, A., Cardona, M.: Piezo-Raman measurements and anharmonic parameters in silicon and diamond. Phys. Rev. B 41, 7529 1990CrossRefGoogle ScholarPubMed
8De Wolf, I.: Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond. Sci. Technol. 11, 139 1996CrossRefGoogle Scholar
9Srikar, V.T., Swan, A.K., Ünlü, M.S., Goldberg, B.B., Spearing, S.M.: Micro-Raman measurement of bending stresses in micromachined silicon flexures. J. MEMS 12, 779 2003CrossRefGoogle Scholar
10Keiler, A., Gogotsi, Y.G., Nickel, K.G.: Phase transformations of silicon caused by contact loading. J. Appl. Phys. 81, 3057 1997Google Scholar
11Gogotsi, Y.G., Miletich, T., Gardner, M., Rosenberg, M.: Microindentation device for in situ study of pressure-induced phase transformations. Rev. Sci. Instrum. 70, 4612 1999CrossRefGoogle Scholar
12Gogotsi, Y.G., Zhou, G., Ku, S-S., Cetinkunt, S.: Raman microspectroscopy of pressure-induced metallization in scratching of silicon. Semicond. Sci. Technol. 16, 345 2001CrossRefGoogle Scholar
13Domnich, V., Gogotsi, Y.G.: Phase transformation in silicon under contact loading. Rev. Adv. Mater. Sci. 3, 1 2002Google Scholar
14Gassilloud, R., Ballif, C., Gasser, P., Buerki, G., Michler, J.: Deformation mechanisms of silicon during nanoscratching. Phys. Status Solidi A 202, 2858 2005CrossRefGoogle Scholar
15Iqbal, Z., Veprek, S.: Raman scattering from hydrogenated microcrystalline and amorphous silicon. J. Phys. C: Solid State Phys. 15, 377 1982CrossRefGoogle Scholar
16Bhardwaj, J.K., Ashraf, H.: Advanced silicon etching using high density plasmasProceedings, Micromachining and Microfabrication Process Technology The International Society for Optical Engineering Austin, TX 1995 224–233Google Scholar
17Rabe, R., Breguet, J-M., Schwaller, P., Stauss, S., Haug, F-J., Patscheider, J., Michler, J.: Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope. Thin Solid Films 469–470, 206 2004Google Scholar
18Dombrowski, K.F.: Micro-Raman investigation of mechanical stress in Si device structures and phonons in SiGe.Ph.D. Thesis, Brandenburgische Technische Universität Cottbus Cottbus Germany 2000Google Scholar
19Rubanov, S., Munroe, P.R.: FIB-induce damage in silicon. J. Microsc. 214, 213 2004CrossRefGoogle ScholarPubMed
20Frey, L., Lehrer, C., Rysell, H.: Nanoscale effects in focused ion beam processing. Appl. Phys. A 76, 1017 2003CrossRefGoogle Scholar
21Zhang, H., Schuster, B.E., Wei, Q., Ramesh, K.T.: The design of accurate micro-compression experiments. Scr. Mater. 54, 181 2006Google Scholar
22Zhao, X.S., Ge, Y.R., Schroeder, J., Persans, P.D.: Carrier-induced strain effect in Si and GaAs nanocrystals. Appl. Phys. Lett. 65, 2033 1994CrossRefGoogle Scholar
23Zi, J., Büscher, H., Falter, C., Ludwig, W., Zhang, K., Xie, X.: Raman shifts in Si nanocrystals. Appl. Phys. Lett. 69, 200 1996Google Scholar
24Weill, G.W., Mansot, J.L., Sagon, G., Carlone, C., Besson, J.M.: Characterisation of Si III and Si IV, metastable forms of silicon at ambient pressure. Semicond. Sci. Technol. 4, 280 1989Google Scholar
25Dahmen, U., Hetherington, C.J., Pirouz, P., Westmacott, K.H.: The formation of hexagonal silicon at twin intersections. Acta Metall. Mater. 38, 269 1989Google Scholar
26Lloyd, S.J., Molina-Aldaregui, J.M., Clegg, W.J.: Deformation under nanoindents in Si, Ge, and GaAs examined through transmission electron microscopy. J. Mater. Res. 16, 3347 2001CrossRefGoogle Scholar
27Levinshtein, M., Rumyanstev, S., Shur, M.: Handbook Series on Semiconductor Parameters 1, 1st ed.World Scientific Singapore 1996 1–30Google Scholar
28Hoffmann, S., Utke, I., Moser, B., Michler, J., Christiansen, S., Schmidt, V., Senz, S., Werner, P., Gösele, U., Ballif, C.: Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. Nano Lett. 6(4), 622 2006CrossRefGoogle ScholarPubMed
29Nyilas, R., Spolenak, R.: Orientation-dependent ductile-to-brittle transitions in nanostructured materials. Acta Mater. 2008 DOI: 10.1016/j.actamat.2008.07.051CrossRefGoogle Scholar