Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-15T22:21:04.706Z Has data issue: false hasContentIssue false

High-temperature creep of polycrystalline BaTiO3

Published online by Cambridge University Press:  31 January 2011

E. T. Park
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, and Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, Illinois 60616
P. Nash
Affiliation:
Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, Illinois 60616
J. Wolfenstine
Affiliation:
Army Materials Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783
K. C. Goretta
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
J. L. Routbort
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

Compressive creep of dense BaTiO3 having linear-intercept grain sizes of 19.3–52.4 μm was investigated at 1200–1300 °C by varying the oxygen partial pressure from 102 to 105 Pa in both constant-stress and constant-crosshead-velocity modes. Microstructures of the deformed materials were examined by scanning and transmission electron microscopy. The stress exponent was ≈1, the grain-size dependence was ≈1/d2, and the activation energy was ≈720 kJ/mole. These parameters, combined with the microstructural observations (particularly grain displacement and absence of deformation-induced dislocations), indicated that the dominant deformation mechanism was grain-boundary sliding accommodated by lattice cation diffusion. Because of the absence of an oxygen partial pressure dependence, diffusion was probably controlled extrinsically.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jona, F. and Shirane, G., Ferroelectric Crystals (Dover, New York, 1993).Google Scholar
2.Doskocil, J. and Pospisil, Z., Silikaty 16, 113 (1976).Google Scholar
3.Garcia Verduch, A. and Linder, R., Arkiv Kemi 5, 313 (1953).Google Scholar
4.Philibert, J., Solid State Ionics 12, 321 (1984).CrossRefGoogle Scholar
5.Domínguez-Rodríguez, A., Castaing, J., Goretta, K. C., and Routbort, J. L., in Point Defects and Related Properties of Ceramics, edited by Mason, T. O. and Routbort, J. L. (Am. Ceram. Soc., Westerville, OH, 1991), p. 139.Google Scholar
6.Carry, C. and Mocellin, A., J. Am. Ceram. Soc. 69, C215 (1986).CrossRefGoogle Scholar
7.Beauchesne, S. and Poirier, J. P., Phys. Earth Planet. Int. 55, 187 (1989).CrossRefGoogle Scholar
8.Routbort, J. L., Acta Metall. 30, 663 (1982).CrossRefGoogle Scholar
9.Cabrera-Caño, J., Domínguez-Rodríguez, A., Marquez, R., Castaing, J., and Philbert, J., Philos. Mag. A 46, 397 (1982).CrossRefGoogle Scholar
10.Duong, H. and Wolfenstine, J., Phys. Status Solidi (a) 129, 379 (1992).CrossRefGoogle Scholar
11.Cannon, W. R. and Langdon, T.G., J. Mater. Sci. 18, 1 (1983).CrossRefGoogle Scholar
12.Oppolzer, H. and Schmelz, H., J. Am. Ceram. Soc. 66, 444 (1983).CrossRefGoogle Scholar
13.Nabarro, F.R. N., Report of Conf. on Strength of Solids (Univ. of Bristol, Bristol, England, 1947), p. 75.Google Scholar
14.Herring, C., J. Appl. Phys. 21, 437 (1950).CrossRefGoogle Scholar
15.Ashby, M.F. and Verrall, R.A., Acta Metall. 21, 149 (1973).CrossRefGoogle Scholar
16.Raj, R. and Ashby, M. F., Metall. Trans. 2, 1113 (1971).CrossRefGoogle Scholar
17.Shirasaki, S., Yamamura, H., Haneda, H., Kakagawa, K., and Moori, J., J. Chem. Phys. 73, 4640 (1980).CrossRefGoogle Scholar
18.Beyers, R. and Shaw, T. M., Solid State Phys. 42, 135 (1989).CrossRefGoogle Scholar
19.Routbort, J. L., Goretta, K. C., Miller, D. J., Kazelas, D.B., Clauss, C., and Domínguez-Rodríguez, A., J. Mater. Res. 7, 2360 (1992).CrossRefGoogle Scholar
20.Jiménez-Melendo, M., De Arellano-López, A. R., Domínguez-Rodríguez, A., Goretta, K. C., and Routbort, J. L., Acta Metall. Mater. 43, 2429 (1995).CrossRefGoogle Scholar
21.Park, E.T., Ph.D. dissertation, Illinois Institute of Technology, Chicago, IL (1997).Google Scholar
22.Yamada, H., J. Mater. Sci. 19, 2639 (1984).CrossRefGoogle Scholar
23.Wolfenstine, J., Armstrong, T. R., Weber, W. J., Boling-Risser, M. A., Goretta, K. C., and Routbort, J. L., J. Mater. Res. 11, 657 (1996).CrossRefGoogle Scholar